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Introduction 

 
Today, Internet security has become an important issue. Many companies try to 

incorporate commerce in the Internet to give its customers more flexibility. To 

incorporate commerce business in the Internet we have to make it more secure and 

more trusted. So Internet security have become a major research topic today. Many 

techniques have been developed to cover this hole in the Internet. One of the most 

famous and strong techniques is Secure Socket Layer (SSL) protocol, which have 

been developed by Netscape Corporation. It’s widely used by many Internet web 

browsers and Internet applications. 

The SSL protocol utilizes both Public Key and Secrete Key Cryptography to 

achieve its goals. Therefore we divide our report into two major parts. In Part I, we 

are going to describe the Secure Socket Layer (SSL) and major topics in 

Cryptography. In Part II, we are going to describe our implementation of SSL 

Package. We will try to describe these two parts in simplified, descriptive, and 

technical manner to be easy to understand. 
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1.1: Introduction 

The best candidate for application-layer security is Netscape Communications 

Secure Socket Layer (SSL) protocol, which is currently in its third revision [3]. SSL is 

a layered protocol.  At each layer, messages may include fields for length, description, 

and content.  SSL takes messages to be transmitted, fragments the data into 

manageable blocks, optionally compresses the data, applies a MAC, encrypts, and 

transmits the result. Received data is decrypted, verified, decompressed, and 

reassembled, then delivered to higher level clients. 

The primary goal of the SSL Protocol is to provide privacy and reliability 

between two communicating applications.  The protocol is composed of two layers.  

At the lowest level, layered on top of some reliable transport protocol (e.g., TCP) (see 

figure(1)), is the SSL Record Protocol.  The SSL Record Protocol is used for 

encapsulation of various higher level protocols.  One such encapsulated protocol, the 

SSL Handshake Protocol, allows the server and client to authenticate each other and 

to negotiate an encryption algorithm and cryptographic keys before the application 

protocol transmits or receives its first byte of data.  One advantage of SSL is that it is 

application protocol independent.  A higher level protocol can layer on top of the SSL 

Protocol transparently. The SSL protocol provides connection security that has three 

basic properties: 

 The connection is private. Encryption is used after an initial handshake to 

define a secret key. Symmetric cryptography is used for data encryption 

(e.g., DES, RC4, etc.) 

 The peer's identity can be authenticated using asymmetric or public key, 

cryptography (e.g., RSA). 

 The connection is reliable.  Message transport includes a message integrity 

check using a keyed MAC. Secure hash functions (e.g., SHA [5], MD5 [4], 

etc.) are used for MAC computations. 
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1.2: Goals of SSL 

   The goals of SSL Protocol, in order of their priority, are: 

1. Cryptographic security SSL should be used to establish a secure 

connection between two parties. 

 

2. Interoperability       Independent programmers should be able to develop 

applications utilizing SSL that will then be able to 

successfully exchange cryptographic parameters 

without knowledge of one another's code. 

 

   Note:          It is not the case that all instances of SSL (even in the same application 

domain) will be able to successfully connect.  For instance, if the 

server supports a particular encryption, and the client does not have 

such encryption, then the connection will not succeed. 

 

     3. Extensibility                  SSL seeks to provide a framework into which new 

public key and bulk encryption methods can be 

incorporated as necessary.  This will also accomplish 

two sub-goals: to prevent the need to create a new 

protocol (and risking the introduction of possible new 

weaknesses) and to avoid the need to implement an 

entire new security library. 

 

Figure (1): The place of SSL in TCP/IP model  [1]
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     4. Relative efficiency       Cryptographic operations tend to be highly CPU 

intensive, particularly public key operations. For this 

reason, the SSL protocol has incorporated an optional 

session caching scheme to reduce the number of 

connections that need to be established from scratch.  

Additionally, care has been taken to reduce network 

activity. 

 

1.3: How SSL Works 

When the client connects the server and client exchange hello messages to 

establish the protocol, define optional encryption algorithms, exchange keys, and 

define optional data-compression parameters (See figure (2)). The server and client 

can mutually request certificates for authentication, including a complete chain of 

certificates leading to a certificate authority. The client generates the bulk encryption 

keys and sends them to the server encrypted with the server’s public key from its 

Figure (2): SSL Handshake Protocol. [3]
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Application Data
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by sending ServerHello
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(3) Certificate Request*

(4) Server Key Exchange*.

Application Data

(1) Agree on Encryption

(2) Finished

* Indicate optional or situation-dependent messages that are not always sent
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certificate. A total of four keys are used, with separate pairs for client-to-server and 

server-to-client communication. 

Once SSL completes the initial handshake, it enters into data mode, in which 

application data is passed in encrypted, sequence chunks, each including a message-

digest to prevent tampering. Multiple encryption algorithms including RC6 and DES 

are supported. Following the interaction, they perform a completion handshake and 

close the connection. Netscape has clearly design SSL to be generic protocol, so it can 

serve applications other than just HTTP, including (potentially) e-mail and database 

access. 
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2.1: Introduction 

Public Key Cryptography (also called asymmetric Cryptography) is a technique 

first identified by Diffie and Hellman in which encryption and decryption involve two 

keys. A user has two keys, the public and private key, and either can encrypt or 

decrypt data. The user gives his public key to other users, and keeps the private key. 

Data encrypted with the public key can be decrypted only with the corresponding 

private key, and vice versa. 

Public Key Cryptography uses other techniques to make it more secure so that 

users on a network can share there secrete information by exchanging it entirely in 

public. 

 

2.2: Public Key Techniques 

Public Key Cryptography uses a set of techniques that allow users on a network 

to share there secrete information by exchanging it entirely in public. These 

techniques are as follow: 

(i) Digital Signatures. 

(ii) Digital Enveloping. 

(iii) Digital Certificates. 

And now we describe each one individually. 

 

Digital Signatures 

Digital Signature is a technique in which a signer, say “Ahmed”, signs a 

message in such a way that any one can verify that the message was signed by no one 

other than Ahmed, and consequently that the message has not been modified since he 

signed it. The implementation of digital signature involves a message digest algorithm 

and public-key algorithm. (We will describe message digest algorithms and public-

key algorithms in chapter 2 and 3). 

 

Digital Enveloping 

Digital Enveloping is a technique in which the user “seals” a message in such a 

way that no one other than the intended recipient can open the sealed message. 
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Digital Certificates 

Digital Certificate is a technique in which a certificate authority “signs” a 

special message containing the name of some user and his public-key, in such a way 

that anyone can verify that the message was signed by no one other than the 

certificate authority and there by develop trust in the user public key. 

We will describe the algorithm in chapter 3. 

 

2.3: Public-Key Cryptosystems 

Public-Key Cryptosystem is a system that generates the public and private keys. 

Since public-key encryption was developed, several public-key systems have been 

proposed. Many of these systems rely their security on different computational 

problems. The most important and popular systems are as follows: 

 

RSA Cryptosystem 

This system was developed by Rivest, Shamir, and Adelman and is known as 

the RSA algorithm. The security of this approach is based on the fact that it can be 

relatively easy to multiply large primes together but almost impossible to factor the 

resulting product [9]. RSA has become the algorithm that most people associate with 

the notion of public-key cryptography. In this research we will use this algorithm as 

the main algorithm and cover all its aspects. 

 

Merkle-Hellman knapsack 

This system is based on the difficulty of the subset sum problem (which is NP-

Complete). However, this system and all the various knapsack systems have been 

shown to be insecure, with exception of the Chord-Rives cryptosystem.[9] 

 

McEliece 

The McEliece cryptosystem is based on algebraic coding theory and is still 

regarded as being secure. Its based on the problem of decoding a linear code (which is 

NP-Complete).[9] 

 

ElGamal 
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The ElGamal cryptosystem is based on the difficulty of the discrete logarithm 

problem for finite fields.[9] 

 

Elliptic Curve 

The Elliptic Curve Cryptosystems are modifications of other systems (such as 

the ElGamal Cryptosystem, for example) the work in the domain of elliptic curves 

rather than finite fields. The Elliptic Curve Cryptosystems appear to remain secure for 

smaller keys than other public-key cryptosystems. With a 160-bit modulus, an elliptic 

curve cryptosystem offers the same level of cryptographic security as RSA with 1024-

bit module. [9] 
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3.1: Introduction 

The main characteristic in Public Key Cryptography is that, it uses two keys 

each one can decrypt what is encrypted with the other key and the first key can’t be 

derived from the second and vice versa. So it requires minimal amount of information 

sharing among users and it allow an arbitrary user to send a key to another, 

specifically identified user. This can happen safely without the users having to 

exchange secrete keys manually. All the sender needs is the recipient’s public key and 

the sender can safely transmit a secret key that only the recipient can read. 

Using this mechanism does not guarantee security at all, it will just make the job 

of an eavesdropper a little harder than before. The popular attack against public key 

cryptography is MAN-IN-THE-MIDDLE attack. There are many ways for success 

using this attack. The best method to illustrate these successful attacks is by example.  

Assume Ahmed wants to talk with Ali and there is an eavesdropper Khalid that 

sees all the traffic that passes between Ahmed and Ali. When Ahmed requests Ali’s 

public key and he send it back to him, Khalid can replace Ali’s public key with his. 

Now, When Ahmed wants to send a message for Ali, He will encrypt it with Khalid’s 

public key and send it. Khalid will intercept this message, decrypt it, read it, encrypt it 

with Ali’s public key, and send it to Ali. In this way, Ahmed and Ali can’t know if 

there is an eavesdropper or not. Moreover, Khalid can change the sent message 

completely if he wants. 

This was a small and simple example of how an attacker can success if we use 

public and private keys only. To make the connection between two parties more 

secure we have to use public key in conjunction with other methods. We will describe 

these methods in next sections. 

 

3.2: ONE-WAY Functions 

The notion of ONE-WAY function is central to public-key cryptography. One-

way functions are fundamental building block for most of the security protocols. 

ONE-WAY functions are relatively easy to compute, but significantly hard to reverse. 

That is, given x its easy to compute f(x) but given f(x) its hard to compute x. One-way 

functions can not be used for encryption (no point in sending an encrypted message 

that no one can read). 
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3.2.1: ONE-WAY Hash Function 

There are many other names for ONE-WAY Hash Function, it’s also called: 

compression functions, contraction function, message digest, fingerprint, 

cryptographic checksum. 

Hash functions have been used in computer science for a long time. A hash 

function is a function that takes a variable-length input string called pre-image and 

converts it to fixed length output string called hash value, In such a way that its hard 

to find two messages with the same hash value. 

Some examples of One-Way hash function algorithms are Secure Hash Algorithm 

(SHA) and Message Digest #5 algorithm (MD5). These two algorithms are used 

frequently for signing and authenticating a messages. 

 

3.2.2: Message Authentication Codes (MAC) 

A Message authentication code, or MAC, is a key-dependent one-way hash 

function. MACs have the same properties as the one-way hash functions discussed 

previously, but they also include a key. Only someone with the identical key can 

verify the hash. They are useful to provide authenticity without secrecy. 

MACs can be used to authenticate files between users. They can also be used by 

a single user to determine if his files have been altered, perhaps by a virus. The user 

could compute the MAC of his files and store that value in a table. If the user used 

one-way hash function, then the virus could compute the new hash after infection and 

replace the table entry. A virus could not do that with a MAC, because the virus does 

not know the key. 

An easy way to turn a one way hash function into MAC is to encrypt the hash 

value with a symmetric algorithm. 

 

3.3 Digital signatures  

Digital signature is a technique in which a sender, say "Ahmed," "signs" a 

message m in such a way that anyone can "verify" that the message was signed by no 

one other than Ahmed, and consequently that the message has not been modified 

since he signed it.  
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The typical implementation of digital signature involves a message-digest 

algorithm and a public-key algorithm for encrypting the message digest (i.e., a 

message-digest encryption algorithm):  

 Ahmed reduces the message m to a message digest d with a message-digest 

algorithm; then he encrypts the message digest d with his private key, 

obtaining an encrypted message digest s. He sends the message m and the 

encrypted message digest s to Ali; the two parts together form the digitally 

signed message.  

 

 Ali decrypts the encrypted message digest s with Ahmed's public key, 

obtaining the message digest d; then he reduces the message m to a 

comparative message digest d' and compares it to the message digest d. If 

the two are the same, he accepts the message.  

Notice that Ali's work does not involve any information specific to him. Indeed, 

anyone can verify at any time that Ahmed signed the message, without access to any 

secret information. This application assumes that Ali knows Ahmed's public key; 

methods of developing trust in users' public keys are covered by the digital certificate 

application.  

 

3.4 Digital enveloping  

Digital enveloping is a technique on in which someone, say Ahmed, "seals" a 

message m in such a way that no one other than the intended recipient, say "Ali," can 

"open” the sealed message.  

The typical implementation of digital enveloping involves a secret-key 

algorithm for encrypting the message (i.e., a content-encryption algorithm) and a 

public-key algorithm for encrypting the secret key (i.e., a key-encryption algorithm):  

 Ahmed encrypts the message m with a randomly generated secret key k, 

obtaining an encrypted message c; then he encrypts the secret key k with 

Ali's public key, obtaining an encrypted secret key e. He sends the 

encrypted message c and the encrypted secret key e to Ali; the two parts 

together form the digitally enveloped message.  
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 Ali decrypts the encrypted secret key e with his private key, obtaining the 

secret key k; then he decrypts the encrypted message c with the secret key k, 

obtaining the message m.  

Notice that Ahmed's work does not involve any information specific to his. 

Indeed, anyone can seal a message at any time for Ali, without access to any secret 

information. This application assumes that Ahmed knows Ali's public key; methods 

of developing trust in users' public keys are covered by the digital certificate 

application.  

 

3.5 Digital certification  

Digital certification is an technique in which a certification authority "signs" a 

special message m containing the name of some user, say "Ahmed," and his public 

key in such a way that anyone can "verify" that the message was signed by no one 

other than the certification authority and thereby develop trust in Ahmed's public key.  

The typical implementation of digital certification involves a signature 

algorithm for signing the special message. (A signature algorithm is chosen here, 

rather than a message-digest algorithm followed by a message-digest encryption 

algorithm, as in the digital signature application, because X.509 certificates only use a 

signature algorithm.)  

 Ahmed sends a "certification request" containing his name and his public 

key to a certification authority.  

 The certification authority forms a special message m from Ahmed's 

request and signs the special message m under its private key, obtaining a 

signature s. The certification authority returns the message m and the 

signature s to Ahmed; the two parts together form a certificate.  

 Ahmed sends the certificate to Ali to convey trust in his public key.  

 Ali verifies the signature s under the certification authority's public 

key. If the signature verifies, he accepts Ahmed's public key.  

As with an ordinary digital signature, anyone can verify at any time that the 

certificate was signed by the certification authority, without access to any secret 

information.  

This application assumes that Ali knows the certification authority's public key. 

Ali can develop trust in the certification authority's public key recursively, if he has a 
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certificate containing the certification authority's public key signed by a superior 

certification authority whom he already trusts. In this sense, a certificate is a stepping 

stone in digital trust.  

 

3.6 Secret-key cryptography  

Secret-key cryptography (also called symmetric cryptography) is the technology 

in which encryption and decryption involve the same key, a secret key. Pairs of users 

share a secret key, keeping the key to themselves. Data encrypted with a secret key 

can be decrypted only with the same secret key.  

A secret-key algorithm is an algorithm for encrypting or decrypting data with a 

secret key. A secret key is typically used to encrypt the content of a message; in such 

an application, the key is called a content-encryption key and the secret-key algorithm 

is called a content-encryption algorithm.  

An Example of secrete-key cryptography is RC4, which have been developed 

by Ronald L. Rivest. We are going to use this algorithm as our main secrete-key 

algorithm. 

Secret-key algorithms are 1000 times faster than public-key algorithms [8]. 

Also, if the message that will be sent is a set of n possible messages then an attacker 

only has to encrypt all the n possible messages and compare the result with the 

encrypted message. So public-key cryptography is usually used to establish secure 

connection and agree upon a secret-key algorithm for exchanging data. 
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4.1: Introduction 

RSA algorithm was introduced in 1978 by three scientists, Rivest, Shamir, and 

Adleman. It has remained secure, no serious flaws have yet been found. Although the 

amount of analysis is no guarantee of security of a method, it does suggest a 

confidence level [11]. 

The RSA encryption algorithm incorporates result from number theory, 

combined with the difficulty of determining the prime factors of a number. RSA 

operate with the arithmetic modular n. 

RSA has become the algorithm that most people associate with the notion of public-

key cryptography. 

In this research we choose RSA to be the main cryptosystem for generating 

public and private keys. Reasons for that choice lies on its popularity, simplicity, and 

(the most important) documentation availability. Elliptic curve cryptosystem known 

to be more secure than RSA cryptosystem relative to the key size, but for the lake of 

documentation, time and no SSL server support it until now we choose RSA to be our 

main cryptosystem. The RSA cryptosystem is based on problems in finite field and 

Elliptic Curve is based on elliptic curve over the finite field. 

 

4.2: Introduction to RSA algorithm 

In this approach a plain text block is treated as an unsigned integer. Two keys, d 

and e are used for decryption and encryption respectively. The plain text P is 

encrypted as (P
e
  mod n) where, n is a product of to large prime numbers. Because the 

exponentiation is performed in modulus n, it’s very difficult to factor P
e
 to uncover 

the encrypted plain text. However, the decryption key d is carefully chosen so that 

((P
e
)
d
 mod n = P). Thus the legitimate receiver who knows d simply computes ((P

e
)
d
 

mod n = P) and recover P without having to factor P
e
. 

The underlying problem on which the encryption algorithm is based is that of 

factoring large numbers (100-digit and higher). The factorization is not even known to 

be NP-Complete; the fastest known algorithm is exponential in time. 
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4.3: Mathematical background of RSA algorithm 

Before we introduce RSA algorithm we have to describe the mathematical 

theory behind it in brief. Any further description can be found in the Number theory 

references (look at references section). 

 

4.3.1:Greatest common divisor and prime Numbers 

The greatest common divisor of two numbers a and b is the largest integer that 

divides both a and b. the greatest common divisor is often written gcd(a,b). For 

example gcd (15,10) = 5. 

prime number is any positive number that is divisible by itself and 1. Means for 

any number q<p, where p is prime, gcd (q, p) = 1.[10] 

 

4.3.2: Euclidean algorithm 

The Euclidean algorithm is a procedure for computing the GCD of two 

numbers. This algorithm exploits the fact that if x divides a and b, then x also divides 

a- (k*b) for every k. 

The Euclidean Algorithm. Let r0 = a and r1 = b be nonnegative integers with b 0. If 

the division algorithm is successively applied to obtain rj = rj+1 qj+1 + rj+2 with             

0 < rj+2 < rj+1 for j = 0,1,2,…., n-2 and rn = 0, then gcd(a, b) = rn-1, the last nonzero 

remainder.[10] 

To understand the algorithm it’s best to illustrate itt by a simple example. So, to 

find the gcd(75,28), we first divide the large number by the smaller: 

75 /28 = 2 + 19/28 

Then we repeat this process on the remainder by getting the gcd(28,19) 

 28/19 = 1 + 9/19 

We repeat this until the remainder equal 0 which is guaranteed to happen sooner or 

later. 

19/9 = 2 + 1/9 

 9/1 = 1 + 0 

The gcd is the last divisor, 1 in our case. Thus gcd(75,28) = 1, which is the correct 

answer. 

4.3.3: Modular Arithmetic 

Here we will only mention some of useful modular arithmetic theorems: 
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Theorem 1: If  a and b and n are integers then  a mod n = b if a = c * n + b for some 

integer c [10]. 

Theorem 2: Two integers a and b said to be relatively prime to each other if and only 

if  gcd(a,b) = 1 [10].  

Theorem 3: Two different integers can have the same result under modulus n. we 

denote this by: 

X  Y  (mod n) 

Theorem 4: the inverse of integer a in modulus n is b if and only if ((a*b) mod n = 1). 

We denote the inverse b as  a
-1

. [10] 

Theorem 5: let n be a positive integer. The Euler phi-function (n) is defined to be the 

number of positive integers not exceeding n which are relatively prime 

to n. [10] 

 

4.3.4: Computing the inverse in modular arithmetic 

There are many methods for computing the inverse in modular arithmetic. One 

of these methods is an extension to Euclidean algorithm called extended Euclidean 

algorithm. 

The Extended Euclidean algorithm uses the results of the quotients in the 

divisions of the Euclidean algorithm to find integers x, y with ax + by = gcd(a, b). 

Thus if gcd(a, b) = 1, then  x (mod b)  is a
-1

 (mod b). 

 To find x we define a sequence of numbers X0, X1,…, Xn-1, according to the 

following recurrence: 

X0 = 0 

X1 = 1 

…….. 

Xj  = Xj-2 – Qj-1 * Xj-1 

Where n is the number of quotients in the division of Euclidean algorithm. And 

Qj is the jth quotient in the divisions of Euclidean algorithm. To make this clear we 

will illustrate it with an example. 

Example: find 28
-1

  (mod 75). 

Solution: from previous example of Euclidean algorithm we find that: 

Q1 = 2,    Q2 = 1,   Q3 = 2,          n = 5 
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Now we apply the rule to find 28
-1 

(mod 75) 

X0 = 0 

X1 = 1 

X2 = 0 – 2 * 1 = -2 

X3 = 1 – 1 * -2 = 3 

X4 = -2 – 2 * 3 = -8 

We find that 28
-1

 (mod 75) = -8 (mod 75) = 67 (mod 75) 

 28
-1

 (mod 75) = 67 (mod 75) 

To prove this we compute  

(28*67) mod 75 = 1876 mod 75 = 1 

 28 * 67 mod 75) 

 28
-1

 = 67 (mod 75)     and 67
-1

 = 28  (mod 75) 

 

 

With this simple algorithm we solve the problem of finding the inverse of 

integer, a, in modulus b. One thing must be noted here, that there is inverse for integer 

a in modulus b if and only if (a,b) = 1. That means if (a,b)  then there is no inverse 

for the integer a in modulus b. [7] 

  

4.4: The RSA Algorithm 

We can know describe the RSA cryptosystem in more detail. RSA cryptosystem 

uses computation in modulus n, where n is multiple of two large prime numbers. 

To generate two keys, choose two random large prime numbers, p and q (refer to 

section 2.5 on how to choose large prime number). For maximum security choose p 

and q of the same length and the length is more than 100-digit. Compute the product: 

 

n = pq 

Then choose encryption key, e, such that e and (n) are relatively prime. 

Finally, using the extended Euclidean algorithm compute d such that: 

 

d = e
-1

 mod (n) 
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At this stage we have produced two keys. The numbers e and n are the public 

key, and the number d is the private key. The two primes p and q are no longer 

needed. 

To encrypt a message m, first divide it into numerical blocks smaller than n 

(m1,…., mi). To encrypt a message block mj and produce the cipher message cj we 

follow this simple formula: 

cj = mj
e
 mod n 

To decrypt a message, take each encrypted block cj and compute: 

mj = cj mod n 

Proving that this formula will produce the original message is as follow: 

 

cj
d
 = (mj

e
)
d
 = mj

ed
 

... ed  1  (mod ((n)) 

 ed = k * ((n)) + 1 

 m = mj
k((n))+1

 
 
= mj

k((n)) + 1
 = mj mj

k((n))
  

 

in modulus n we get 

mj mj
k((n))

   mod  n = [(mj mod n) . (mj
k((n))

  mod n)] mod n 

...  mj mod n = mj 

We assuming that m is relatively prime to n because The probability that m and 

n are not relatively prime is extremely small, Its about 10
-99

 when p and q are both 

larger than 10
100

 [10]. 

 mj
k((n))

  mod n = 1 

 [(mj mod n) . (mj
k((n))

  mod n)] mod n 

    =  mj *  1  mod n  =  mj 

 we get the original message. [9,10] 



4.5: Probabilistic Primality Testing 

In setting up the RSA Cryptosystem, its necessary to generate large primes (e.g. 

100 digit). In practice, the way this is done is to generate large random numbers, and 

then test them for primality using a probabilistic polynomial-time Monte Carlo 

algorithm such as the Solovay-Strassen or Miller-Rabin algorithm. These algorithms 
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are fast (i.e. an integer n can be tested in time that is polynomial in log2n, the number 

of bits in the binary representation of n), but there is a possibility that the algorithm 

may claim that n is prime when its not. However, by running the algorithm enough 

times, the error probability can be reduced below any desired threshold. 

There are also other methods that are called True Primality Tests. In these 

methods positive integers can be proven to be prime, and also these methods called 

primality proving algorithms. These primality tests are generally more 

computationally intensive than the probabilistic primality tests such as Miller-Rabin 

algorithm. Consequently, before applying one of these tests to a candidate prime n, 

the candidate should be subjected to a probabilistic primality test.  

In this research we will use Miller-Rabin algorithm because it’s better than 

Solovay-Strassen in computational expensivity, implementation simplicity, and 

probabilistic error.  

 

4.5.1: Miller-Rabin Test 

The probabilistic primality test used most in practice is the Miller-Rabin test, 

also known as the strong pseudoprime test. Here we aren’t going to describe the 

theory behind it; we will just describe the algorithm of generating a prime number. 

 To generate a prime number, first choose a random number, p, to test. Calculate 

b, where b is the number of times 2 divides p-1 (i.e. 2
b
 is the largest power of 2 that 

divides p-1). Then calculate m, such that p = 1 + 2
b
 m. after that set the security 

parameter, t, where t is integer greater than or equal 1 [8]. The security parameter 

decreases the probability of compositeness of p whenever it increases. Then follow 

the following procedure: 

for I from 1 to t do the following 

 begin 

   choose a random number, a, such that a is less than p. 

   compute y = a
m

 mod p. 

   if y 1 and y p-1 then do the following 

     begin 

       j = 1 

       while j < b-1 and y n –1 do the following 

         begin 
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            compute y =  y
2
  mod n. 

            if y = 1 then return (p is composite) 

            j = j + 1 

         end 

       if y n –1 then return (p is composite)  

     end 

 end 

return (p is prime) 
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II 

SSL package 

Implementation 
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II.1 Data structure Representation: 

In the following chapters the representation language will include ASN.1 

notation, XDR notation, and pseudo-Pascal for code implemented in Delphi ™. We 

try to standardize our notation by using Delphi language but due to limitation in 

Pascal language, some structures can't be represented in Pascal language. So we use 

the standard notation for each module. However, we add an appendixes at the end of 

this report that describe each notation in a simple way.  

 

II.2 SSL Package: 

The package is divided into three modules: 

1- SSL module: which encapsulates the main SSL protocol and provide suitable 

interfaces for overlying applications. 

2- Cryptographic module: which is a library that includes all the needed 

cryptography algorithms that will be used by the SSL module. 

3- X.509 Authentication module: Which is a standard protocol for 

authentication developed by ISO. The SSL module uses it to authenticate the 

server and the client (if needed). 

We designed the cryptography and X.509 modules such that they are 

independent from the SSL package, which means that they can be used in other 

applications without using the SSL module. 
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5 

Secure Socket Layer  

Module 
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5.1 Introduction 

The SSL module implement the client side of the SSL protocol. The server side 

has been taken into account while developing this package so this package can be 

easily upgraded to implement both side.  

The SSL Protocol Composed of two layers (see figure 3). At the lowest level 

(layered on top of some reliable transport protocol (e.g., TCP))  is the SSL Record 

Protocol. The SSL Record Protocol is used for encapsulation of various higher level 

protocols.  One such encapsulated protocol, the SSL Handshake Protocol, allows the 

server and client to authenticate each other and to negotiate an encryption algorithm 

and cryptographic keys before the application protocol transmits or receives its first 

byte of data.  One advantage of SSL is that it is application protocol independent.  A 

higher level protocol can layer on top of the SSL Protocol transparently. 

5.2 Presentation language  

In This Specification we are going to deal with a structures that can't be specify 

in Pascal Language. So In Describing the SSL protocol we will adopt the presentation 

Language used in the original SSL document [3].  The language is very basic, it uses 

the programming language "C" in its syntax and XDR [16] in both its syntax and 

intent (see appendix B for Language Specification). 

 

5.3 Session and connection states  

An SSL session is stateful protocol. But this does not mean that the applications 

built on top of SSL layer must be stateful. HTTP for example, is stateless. It remains  

 

Protocols Layer

Record Layer

HandshakeAlertChangeCipherSpec Application Data

Figure (3) : SSL Protocol Layers 
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statless when used over SSL.  It is the responsibility of the SSL Handshake protocol 

to coordinate the states of the client and server, thereby allowing the protocol state 

machines of each to operate consistently, despite the fact that the state is not exactly 

parallel.  Logically the state is represented twice, once as the current operating state, 

and (during the handshake protocol) again as the pending state.  Additionally, separate 

read and write states are maintained.  When the client or server receives a change 

cipher spec message, it copies the pending read state into the current read state.  When 

the client or server sends a change cipher spec message, it copies the pending write 

state into the current write state.  When the handshake negotiation is complete, the 

client and server exchange change cipher spec messages (see Section 5.5), and they 

then communicate using the newly agreed-upon cipher spec.  

An SSL session may include multiple secure connections; in addition, parties 

may have multiple simultaneous sessions.  

 

The session state includes the following elements:  

 

Session identifier An arbitrary byte sequence chosen by the server to identify 

an active or resumable session state. 

Peer certificate X509.v3[14] certificate of the peer.  This element of the 

state may be null. 

Compression method The algorithm used to compress data prior to encryption.  

Cipher spec Specifies the bulk data encryption algorithm (such as null, 

DES, etc.) and a MAC algorithm (such as MD5 or SHA).  It 

also defines cryptographic attributes such as the hash_size. 

(See definition below) 

Master secret 48-byte secret shared between the client and server.  

is resumable A flag indicating whether the session can be used to initiate 

new connections. 

 

The CipherSpec is part of the Session State.  References to fields of  the CipherSpec 

are made throughout this document using presentation syntax. CipherSpec structure is 

as follow: 

 

     enum { stream, block } CipherType; 
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     enum { true, false } IsExportable; 

 

     enum { null, rc4, rc2, des, 3des, des40, fortezza }  BulkCipherAlgorithm; 

 

     enum { null, md5, sha } MACAlgorithm; 

 

     struct { 

         BulkCipherAlgorithm bulk_cipher_algorithm; 

         MACAlgorithm mac_algorithm; 

         CipherType cipher_type; 

         IsExportable is_exportable 

         uint8 hash_size; 

         uint8 key_material; 

         uint8 IV_size; 

     } CipherSpec; 

 

The connection state includes the following elements:  

 

Server and client random Byte sequences that are chosen by the server and client 

for each connection. 

Server write MAC secret The secret used in MAC operations on data written by 

the server. 

Client write MAC secret The secret used in MAC operations on data written by 

the client. 

Server write key The cipher key for data encrypted by the server and 

decrypted by the client. 

Client write key The cipher key for data encrypted by the client and 

decrypted by the server. 

Initialization vectors When a block cipher in CBC mode is used, an 

initialization vector (IV) is maintained for each key.  

This field is first initialized by the SSL handshake 

protocol.  Thereafter the final ciphertext block from 

each record is preserved for use with the following 

record. 

Sequence numbers Each party maintains separate sequence numbers for 

transmitted and received messages for each connection.  

When a party sends or receives a change cipher spec 
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message, the appropriate sequence number is set to 

zero.  Sequence numbers are of type uint64 and may 

not exceed 2^64-1. 

 

5.4 Record layer  

The SSL Record Layer receives uninterpreted data from higher layers in non-

empty blocks of arbitrary size.  

 

5.4.1 Fragmentation  

The record layer fragments information blocks into SSLPlaintext records of 

2^14 bytes or less.  Client message boundaries are not preserved in the record layer 

(i.e., multiple client messages of the same ContentType may be coalesced into a 

single SSLPlaintext record).  The structure of  SSLPlainText is as follow:  

 

     struct {  

         uint8 major, minor;  

     } ProtocolVersion;  

 

     enum {  

         change_cipher_spec(20), alert(21), handshake(22),  

         application_data(23), (255)  

     } ContentType;  

 

     struct {  

         ContentType type;  

         ProtocolVersion version;  

         uint16 length;  

         opaque fragment[SSLPlaintext.length];  

     } SSLPlaintext;  

 

Type The higher level protocol used to process the enclosed fragment. 

Version The version of protocol being employed. 

Length The length (in bytes) of the following SSLPlaintext.fragment.  
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The length should not exceed 2^14. 

Fragment The application data.  This data is transparent and treated as an 

independent block to be dealt with by the higher level protocol 

specified by the type field. 

 

Note: Data of different SSL Record layer content types may be interleaved.  

Application data is generally of lower precedence for transmission than other content 

types.  

The Algorithm used in our implementation to analyze SSLPlainText structure is as 

follow:  

 

5.4.2 Record compression and decompression  

All records are compressed using the compression algorithm defined in the 

current session state. There is always an active compression algorithm, however 

initially it is defined as CompressionMethod.null. The compression algorithm 

translates an SSLPlaintext structure into an SSLCompressed structure. Compression 

functions erase their state information whenever the CipherSpec is replaced.  

Compression must be lossless and may not increase the content length by more 

than 1024 bytes.  If the decompression function encounters an 

SSLCompressed.fragment that would decompress to a length in excess of 2^14 bytes, 

it should issue a fatal decompression_failure alert (Section 5.7.2). The structure of  

SSLCompressed is as follow: 

Algorithm AnalyseSSLPlainText( PlainText : StreamOfBytes); 

begin 

 Get PlainText Header; 

 if Version < 3 then Raise an error and close the connection; 

else 

  begin 

   Msg_Body := Get PlainText Fragment; 

   case Type of 

    Handshake: (AnalyseHandShake(Msg_Body)); 

    Change_Cipher_Spec: (AnalyseChangeCipherSpec(Msg_Body)); 

    Application_Data: (AnalyseApplicationData(Msg_Body)); 

    Alert: (AnalyseAlert(Msg_Body)); 

   end 

  end; 

end; 
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     struct {  

         ContentType type;       /* same as SSLPlaintext.type */  

         ProtocolVersion version;/* same as SSLPlaintext.version */  

         uint16 length;  

         opaque fragment[SSLCompressed.length];  

     } SSLCompressed;  

  

Length The length (in bytes) of the following SSLCompressed.fragment.  The 

length should not exceed 2^14 + 1024. 

Fragment The compressed form of SSLPlaintext.fragment. 

 

Note:A CompressionMethod.null operation is an identity operation; no fields are 

altered.  

The Algorithm used in our implementation to analyze SSLCompressed structure is as 

follow: 

 

5.4.3 Record payload protection and the CipherSpec  

All records are protected using the encryption and MAC algorithms defined in 

the current CipherSpec. There is always an active CipherSpec, however initially it is 

SSL_NULL_WITH_NULL_NULL, which does not provide any security.  

Once the handshake is complete, the two parties have shared secrets that are 

used to encrypt records and compute keyed message authentication codes (MACs) on 

their contents.  The techniques used to perform the encryption and MAC operations 

Algorithm AnalyseSSLCompressed( Compressed : StreamOfBytes); 

begin 

 Get Compressed Header 

 Buffer := Get Compressed Fragment;  

 DataBuffer := Decompress fragment; 

 If length(DataBuffer) > 2^14+1024 then send alert and close the connection; 

 else 

  begin 

   Update the fragment size in the header info; 

   Append Data Buffer to fragment info; 

   AnalyseSSLPlainText(fragment); 

  end; 

end; 
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are defined by the CipherSpec and constrained by CipherSpec.cipher_type.  The 

encryption and MAC functions translate an SSLCompressed structure into an 

SSLCiphertext.  The decryption functions reverse the process.  Transmissions also 

include a sequence number so that missing, altered, or extra messages are detectable. 

The structure of  SSLCipherText is as follow: 

     struct {  

         ContentType type;  

         ProtocolVersion version;  

         uint16 length;  

         select (CipherSpec.cipher_type) {  

             case stream: GenericStreamCipher;  

             case block: GenericBlockCipher;  

         } fragment;  

     } SSLCiphertext;  

Type The type field is identical to SSLCompressed.type. 

Version The version field is identical to SSLCompressed.version. 

Length The length (in bytes) of the following 

SSLCiphertext.fragment.  The length may not exceed 2^14 + 

2048. 

Fragment The encrypted form of SSLCompressed.fragment, including 

the MAC. 

 

The Algorithm used in our implementation to analyze SSLCompressed structure is as 

follow:  

Algorithm AnalyseSSLCipherText( CipherText : StreamOfMemory); 

begin 

Get CipherText Header 

if Version < 3 then raise and error and close the connection; 

else 

  begin 

   Buffer := Decipher the coming Data; 

   if Cipher algorithm is Block cipher then 

    begin 

     Update Initialization Vector (IV); 

     Remove Block Padding from the data; 

    end; 

    Verify the hashing value; 

    if the hashing is equal then 

    begin 

      if Cipher Enabled then Increment Reading Message Sequence; 

      AnalyseSSLCompressed(Buffer); 

    end 

   else send alert and close the connection; 

 end; 

end; 
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5.4.3.1 Null or standard stream cipher  

Stream ciphers (including BulkCipherAlgorithm.null) convert 

SSLCompressed.fragment structures to and from stream SSLCiphertext.fragment 

structures. The structure of  GenericStreamCipher is as follow: 

 

     stream-ciphered struct {  

         opaque content[SSLCompressed.length];  

         opaque MAC[CipherSpec.hash_size];  

     } GenericStreamCipher;  

 

The MAC is generated as:  

 

hash(MAC_write_secret + pad_2 + hash(MAC_write_secret + pad_1 + seq_num + 

SSLCompressed.type + SSLCompressed.length + SSLCompressed.fragment));  

 

where "+" denotes concatenation.  

 

Pad_1 The character 0x36 repeated 48 times for MD5 or 40 times for 

SHA. 

Pad_2 The character 0x5c repeated 48 times for MD5 or 40 times for 

SHA. 

Seq_num The sequence number for this message. 

Hash Hashing algorithm derived from the cipher suite. 

 

Note that the MAC is computed before encryption.  The stream cipher encrypts 

the entire block, including the MAC.  For stream ciphers that do not use a 

synchronization vector (such as RC4), the stream cipher state from the end of one 

record is simply used on the subsequent packet.  If the CipherSuite is 

SSL_NULL_WITH_NULL_NULL, encryption consists of the identity operation (i.e., 

the data is not encrypted and the MAC size is zero implying that no MAC is used).  

SSLCiphertext.length is SSLCompressed.length plus CipherSpec.hash_size.  
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5.4.3.2 CBC block cipher  

For block ciphers (such as RC2 or DES), the encryption and MAC functions 

convert SSLCompressed.fragment structures to and from block 

SSLCiphertext.fragment structures. The structure of  GenericBlockCipher is as 

follow: 

 

     block-ciphered struct {  

         opaque content[SSLCompressed.length];  

         opaque MAC[CipherSpec.hash_size];  

         uint8 padding[GenericBlockCipher.padding_length];  

         uint8 padding_length;  

     } GenericBlockCipher;  

 

The MAC is generated as described in Section 5.4.3.1.  

 

Padding Padding that is added to force the length of the plaintext to be a 

multiple of the block cipher's block length. 

Padding_length The length of the padding must be less than the cipher's block 

length and may be zero. The padding length should be such that 

the total size of the GenericBlockCipher structure is a multiple of 

the cipher's block length. 

 

The encrypted data length (SSLCiphertext.length) is one more than the sum of 

SSLCompressed.length, CipherSpec.hash_size, and padding_length.  

 

Note: With CBC block chaining the initialization vector (IV) for the first record is 

provided by the handshake protocol.  The IV for subsequent records is the last 

ciphertext block from the previous record.  

 

5.5 Change cipher spec protocol  

The change cipher spec protocol exists to signal transitions in ciphering 

strategies.  The protocol consists of a single message, which is encrypted and 
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compressed under the current (not the pending) CipherSpec.  The message consists of 

a single byte of value 1. The structure of  ChangeCipherSpec is as follow: 

 

     struct {  

         enum { change_cipher_spec(1), (255) } type;  

     } ChangeCipherSpec;  

 

The change cipher spec message is sent by both the client and server to notify 

the receiving party that subsequent records will be protected under the just-negotiated 

CipherSpec and keys. Reception of this message causes the receiver to copy the read 

pending state into the read current state. The client sends a change cipher spec 

message following handshake key exchange and certificate verify messages (if any), 

and the server sends one after successfully processing the key exchange message it 

received from the client.  An unexpected change cipher spec message should generate 

an unexpected_message alert (see the next section).  When resuming a previous 

session, the change cipher spec message is sent after the hello messages.  

 

5.6 Alert protocol  

One of the content types supported by the SSL Record layer is the alert type.  

Alert messages convey the severity of the message and a description of the alert.  

Alert messages with a level of fatal result in the immediate termination of the 

connection.  In this case, other connections corresponding to the session may 

continue, but the session identifier must be invalidated, preventing the failed session 

from being used to establish new connections.  Like other messages, alert messages 

are encrypted and compressed, as specified by the current connection state. The Alert 

structure and the messages is as follow: 

 

     enum { warning(1), fatal(2), (255) } AlertLevel;  

 

     enum {  

         close_notify(0),  

         unexpected_message(10),  

         bad_record_mac(20),  
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         decompression_failure(30),  

         handshake_failure(40),  

         no_certificate(41),  

         bad_certificate(42),  

         unsupported_certificate(43),  

         certificate_revoked(44),  

         certificate_expired(45),  

         certificate_unknown(46),  

         illegal_parameter (47)  

         (255)  

     } AlertDescription;  

 

     struct {  

         AlertLevel level;  

         AlertDescription description;  

     } Alert;  

 

5.6.1 Closure alerts  

The client and the server must share knowledge that the connection is ending in 

order to avoid a truncation attack.  Either party may initiate the exchange of closing 

messages.  

 

Close_notify This message notifies the recipient that the sender will not send any 

more messages on this connection.  The session becomes 

unresumable if any connection is terminated without proper 

close_notify messages with level equal to warning. 

 

Either party may initiate a close by sending a close_notify alert. Any data 

received after a closure alert is ignored.  

Each party is required to send a close_notify alert before closing the write side 

of the connection.  It is required that the other party respond with a close_notify alert 

of its own and close down the connection immediately, discarding any pending writes.  

It is not required for the initiator of the close to wait for the responding close_notify 

alert before closing the read side of the connection.  
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5.6.2 Error alerts  

Error handling in the SSL Handshake protocol is very simple.  When an error is 

detected, the detecting party sends a message to the other party.  Upon transmission or 

receipt of an fatal alert message, both parties immediately close the connection.  

Servers and clients are required to forget any session-identifiers, keys, and secrets 

associated with a failed connection.  The following error alerts are defined:  

 

Unexpected_message An inappropriate message was received.  This alert is 

always fatal and should never be observed in 

communication between proper implementations. 

Bad_record_mac This alert is returned if a record is received with an 

incorrect MAC.  This message is always fatal. 

Decompression_failure The decompression function received improper input 

(e.g. data that would expand to excessive length).  This 

message is always fatal. 

Handshake_failure Reception of a handshake_failure alert message indicates 

that the sender was unable to negotiate an acceptable set 

of security parameters given the options available.  This 

is a fatal error. 

No_certificate A no_certificate alert message may be sent in response to 

a certification request if no appropriate certificate is 

available. 

Bad_certificate A certificate was corrupt, contained signatures that did 

not verify correctly, etc. 

Unsupported_certificate A certificate was of an unsupported type. 

Certificate_revoked A certificate was revoked by its signer. 

Certificate_expired A certificate has expired or is not currently valid. 

Certificate_unknown Some other (unspecified) issue arose in processing the 

certificate, rendering it unacceptable. 

Illegal_parameter A field in the handshake was out of range or inconsistent 

with other fields.  This is always fatal. 
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5.7 Handshake protocol overview  

The cryptographic parameters of the session state are produced by the SSL 

Handshake Protocol, which operates on top of the SSL Record Layer.  When a SSL 

client and server first start communicating, they agree on a protocol version, select 

cryptographic algorithms, optionally authenticate each other, and use public-key 

encryption techniques to generate shared secrets.  These processes are performed in 

the handshake protocol, which can be summarized as follows: The client sends a 

client hello message to which the server must respond with a server hello message, or 

else a fatal error will occur and the connection will fail.  The client hello and server 

hello are used to establish security enhancement capabilities between client and 

server.  The client hello and server hello establish the following attributes: Protocol 

Version, Session ID, Cipher Suite, and Compression Method.  Additionally, two 

random values are generated and exchanged: ClientHello.random and 

ServerHello.random.  

Following the hello messages, the server will send its certificate, if it is to be 

authenticated.  Additionally, a server key exchange message may be sent, if it is 

required (e.g. if their server has no certificate, or if its certificate is for signing only).  

If the server is authenticated, it may request a certificate from the client, if that is 

appropriate to the cipher suite selected.  Now the server will send the server hello 

done message, indicating that the hello-message phase of the handshake is complete.  

The server will then wait for a client response.  If the server has sent a certificate 

request Message, the client must send either the certificate message or a no_certificate 

alert.  The client key exchange message is now sent, and the content of that message 

will depend on the public key algorithm selected between the client hello and the 

server hello.  If the client has sent a certificate with signing ability, a digitally-signed 

certificate verify message is sent to explicitly verify the certificate.  

At this point, a change cipher spec message is sent by the client, and the client 

copies the pending Cipher Spec into the current Cipher Spec.  The client then 

immediately sends the finished message under the new algorithms, keys, and secrets.  

In response, the server will send its own change cipher spec message, transfer the 

pending to the current Cipher Spec, and send its finished message under the new 

Cipher Spec.  At this point, the handshake is complete and the client and server may 

begin to exchange application layer data. (See figure 4).  
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Note: To help avoid pipeline stalls, ChangeCipherSpec is an independent SSL 

Protocol content type, and is not actually an SSL handshake message.  

 

When the client and server decide to resume a previous session or duplicate an 

existing session (instead of negotiating new security parameters) the message flow is 

as follows:  

The client sends a ClientHello using the Session ID of the session to be 

resumed.  The server then checks its session cache for a match.  If a match is found, 

and the server is willing to re-establish the connection under the specified session 

state, it will send a ServerHello with the same Session ID value.  At this point, both 

client and server must send change cipher spec messages and proceed directly to 

finished messages.  Once the re-establishment is complete, the client and server may 

begin to exchange application layer data.  (See Figure 5.) If a Session ID match is not 

found, the server generates a new session ID and the SSL client and server perform a 

full handshake.  

 

 CLIENT  SERVER

ClientHello

ServerHello

Certificate*

ServerKeyExchange*

CertificateRequest*

ServerHelloDoneCertificate

ClientKeyExchange

CertificateVerify*

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Application Data Application Data

* Indicates optional or situation-dependent messages that are not always sent

Figure (4): Full handshake protocol  [3] 
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The contents and significance of each message will be presented in detail in the 

following sections.  

 

5.8 Handshake protocol  

The SSL Handshake Protocol is one of the defined higher level clients of the 

SSL Record Protocol.  This protocol is used to negotiate the secure attributes of a 

session.  Handshake messages are supplied to the SSL Record Layer, where they are 

encapsulated within one or more SSLPlaintext structures, which are processed and 

transmitted as specified by the current active session state. The structure of  

Handshake Messages is as follow: 

 

enum {  

hello_request(0), client_hello(1), server_hello(2), certificate(11), 

server_key_exchange (12), certificate_request(13), server_hello_done(14),  

certificate_verify(15), client_key_exchange(16), finished(20), (255)  

} HandshakeType;  

 

     struct {  

         HandshakeType msg_type;    /* handshake type */  

         uint24 length;             /* bytes in message */  

 

 CLIENT  SERVER

ClientHello

ServerHello

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Application Data Application Data

Figure (5)  Resume Handshake protocol 
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         select (HandshakeType) {  

             case hello_request: HelloRequest;  

             case client_hello: ClientHello;  

             case server_hello: ServerHello;  

             case certificate: Certificate;  

             case server_key_exchange: ServerKeyExchange;  

             case certificate_request: CertificateRequest;  

             case server_hello_done: ServerHelloDone;  

             case certificate_verify: CertificateVerify;  

             case client_key_exchange: ClientKeyExchange;  

             case finished: Finished;  

         } body;  

     } Handshake;  

 

The handshake protocol messages are presented in the order they must be sent; 

sending handshake messages in an unexpected order results in a fatal error. The 

Algorithm used in our implementation to analyze Handshake structure is as follow: 

We are going to describe each message in more detail. However, the 

ServerKeyExchange message is used for anonymous servers and needs more 

Algorithm AnalyseHandshake( Buffer : StreamOfBytes); 

begin 

 while Buffer not empty do 

   begin 

    Get the handshake message header 

    Msg_Type := handshake message type; 

    Msg_Body := handshake message body; 

    case Msg_Type of 

     Hello_Request:(AnalyseHelloRequest); 

     Client_Hello:(AnalyseClientHello(Msg_Body)); 

     Server_Hello:(AnalyseServerHello(Msg_Body)); 

     Certificate:(AnalyseCertificate(Msg_Body)); 

     Server_Key_Exchange:(AnalyseServerKeyExchange(Msg_Body)); 

     Certificate_Request:(AnalyseCertificateRequest(Msg_Body)); 

     Server_Hello_Done:(AnalyseServerHelloDone(Msg_Body)); 

     Certificate_Verify:(AnalyseCertificateVerify(Msg_Body)); 

     Client_Key_Exchange:(AnalyseClientKeyExchange(Msg_Body)); 

     Finished:(AnalyseFinished(Msg_Body)); 

    end; 

   end; 

 end; 
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complicated algorithms, So we decide to restrict our project to non-anonymous 

servers. Because anonymous servers is vulnerable to MAN-IN-THE-MIDDLE attack.   

 

5.8.1 Hello messages  

The hello phase messages are used to exchange security enhancement 

capabilities between the client and server.  When a new session begins, the 

CipherSpec encryption, hash, and compression algorithms are initialized to null.  The 

current CipherSpec is used for renegotiation messages.  

 

5.8.2 Hello request  

The hello request message may be sent by the server at any time, but will be 

ignored by the client if the handshake protocol is already underway.  It is a simple 

notification that the client should begin the negotiation process anew by sending a 

client hello message when convenient.  

 

Note: Since handshake messages are intended to have transmission precedence over 

application data, it is expected that the negotiation begin in no more than one 

or two times the transmission time of a maximum length application data 

message. 

 

After sending a hello request, servers should not repeat the request until the 

subsequent handshake negotiation is complete.  A client that receives a hello request 

while in a handshake negotiation state should simply ignore the message.  

 

The structure of a hello request message is as follows:  

 

     struct { } HelloRequest;  

 

5.8.3 Client hello  

When a client first connects to a server it is required to send the client hello as 

its first message.  The client can also send a client hello in response to a hello request 

or on its own initiative in order to renegotiate the security parameters in an existing 

connection.  The client hello message includes a random structure, which is used later 

in the protocol. The structure of  the Random is as follow: 
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struct {  

       uint32 gmt_unix_time;  

       opaque random_bytes[28]; } Random;  

 

Gmt_unix_time The current time and date in standard UNIX 32-bit format 

according to the sender's internal clock.  Clocks are not required 

to be set correctly by the basic SSL Protocol; higher level or 

application protocols may define additional requirements. 

Random_bytes 28 bytes generated by a secure random number generator. 

 

The client hello message includes a variable length session identifier.  If not 

empty, the value identifies a session between the same client and server whose 

security parameters the client wishes to reuse.  The session identifier may be from an 

earlier connection, this connection, or another currently active connection.  The 

second option is useful if the client only wishes to update the random structures and 

derived values of a connection, while the third option makes it possible to establish 

several simultaneous independent secure connections without repeating the full 

handshake protocol.  The actual contents of the SessionID are defined by the server. 

The structure of SessionID is as follow: 

 

     opaque SessionID<0..32>;  

 

The Client hello message have a CipherSuite list, passed from the client to the 

server in the client hello message, contains the combinations of cryptographic 

algorithms supported by the client in order of the client's preference (first choice 

first).  Each CipherSuite defines both a key exchange algorithm and a CipherSpec.  

The server will select a cipher suite or, if no acceptable choices are presented, return a 

handshake failure alert and close the connection. The structure of CipherSuite and the 

Suites is as follow: 

 

     uint8 CipherSuite[2];  /* Cryptographic suite selector */  
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CipherSuite SSL_NULL_WITH_NULL_NULL                             = { 0x00,0x00 }; 

CipherSuite SSL_RSA_WITH_NULL_MD5                                 = { 0x00,0x01 }; 

CipherSuite SSL_RSA_WITH_NULL_SHA                             = { 0x00,0x02 }; 

CipherSuite SSL_RSA_EXPORT_WITH_RC4_40_MD5             = { 0x00,0x03 }; 

CipherSuite SSL_RSA_WITH_RC4_128_MD5                             = { 0x00,0x04 }; 

CipherSuite SSL_RSA_WITH_RC4_128_SHA                             = { 0x00,0x05 }; 

CipherSuite SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5   = { 0x00,0x06 }; 

CipherSuite SSL_RSA_WITH_IDEA_CBC_SHA                         = { 0x00,0x07 }; 

CipherSuite SSL_RSA_EXPORT_WITH_DES40_CBC_SHA      = { 0x00,0x08 }; 

CipherSuite SSL_RSA_WITH_DES_CBC_SHA                           = { 0x00,0x09 }; 

 

The client hello includes a list of compression algorithms supported by the 

client, ordered according to the client's preference.  If the server supports none of 

those specified by the client, the session must fail.  

 

     enum { null(0), (255) } CompressionMethod;  

 

Issue: Which compression methods to support are under investigation. Until now 

there is no compression method has been supported (even in TLS ver 1.0).  

 

The structure of the client hello is as follows.  

     struct {  

         ProtocolVersion client_version;  

         Random random;  

         SessionID session_id;  

         CipherSuite cipher_suites<2..2^16-1>;  

         CompressionMethod compression_methods<1..2^8-1>;  

     } ClientHello;  

 

Client_version The version of the SSL protocol by which the client 

wishes to communicate during this session.  This should 

be the most recent (highest valued) version supported by 

the client.  For this version of the specification, the 

version will be 3.0 

Random A client-generated random structure. 
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Session_id The ID of a session the client wishes to use for this 

connection.  This field should be empty if no session_id is 

available or the client wishes to generate new security 

parameters. 

Cipher_suites This is a list of the cryptographic options supported by the 

client, sorted with the client's first preference first.  If the 

session_id field is not empty (implying a session 

resumption request) this vector must include at least the 

cipher_suite from that session. 

Compression_methods This is a list of the compression methods supported by the 

client, sorted by client preference. If the session_id field is 

not empty (implying a session resumption request) this 

vector must include at least the compression_method from 

that session.  All implementations must support 

CompressionMethod.null. 

 

After sending the client hello message, the client waits for a server hello 

message.  Any other handshake message returned by the server except for a hello 

request is treated as a fatal error.  

 

Implementation note:  

Application data may not be sent before a finished message has been sent.  

Transmitted application data is known to be insecure until a valid finished message 

has been received.  This absolute restriction is relaxed if there is a current, non-null 

encryption on this connection.  

 

5.8.4 Server hello  

The server processes the client hello message and responds with either a 

handshake_failure alert or server hello message. The Structure of ServerHello is as 

follow: 
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struct {  

         ProtocolVersion server_version;  

         Random random;  

         SessionID session_id;  

         CipherSuite cipher_suite;  

         CompressionMethod compression_method;  

     } ServerHello;  

Server_version This field will contain the lower of that suggested by the 

client in the client hello and the highest supported by the 

server.  For this version of the specification, the version 

will be 3.0. 

Random This structure is generated by the server and must be 

different from (and independent of) ClientHello.random. 

Session_id This is the identity of the session corresponding to this 

connection.  If the ClientHello.session_id was non-empty, 

the server will look in its session cache for a match.  If a 

match is found and the server is willing to establish the 

new connection using the specified session state, the server 

will respond with the same value as was supplied by the 

client.  This indicates a resumed session and dictates that 

the parties must proceed directly to the finished messages.  

Otherwise this field will contain a different value 

identifying the new session.  The server may return an 

empty session_id to indicate that the session will not be 

cached and therefore cannot be resumed. 

Cipher_suite The single cipher suite selected by the server from the list 

in ClientHello.cipher_suites. For resumed sessions this 

field is the value from the state of the session being 

resumed. 

Compression_method The single compression algorithm selected by the server 

from the list in ClientHello.compression_methods.  For 

resumed sessions this field is the value from the resumed 

session state. 
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5.8.5 Server certificate  

If the server is to be authenticated (which is generally the case), the server sends 

its certificate immediately following the server hello message.  The certificate type 

must be appropriate for the selected cipher suite's key exchange algorithm, and is 

generally an X.509v3 certificate (see chapter 7).  The same message type will be used 

for the client's response to a certificate request message. The Structure of Server 

Certificate is as follow: 

 

     opaque ASN.1Cert<1..2^24-1>;  

     struct {  

         ASN.1Cert certificate_list<1..2^24-1>;  

     } Certificate;  

 

     certificate_list  This is a sequence (chain) of X.509.v3 certificates, ordered with the 

sender's certificate first followed by any certificate authority certificates proceeding 

sequentially upward.  

 

5.8.6 Certificate request  

A non-anonymous server can optionally request a certificate from the client, if 

appropriate for the selected cipher suite. The Structure of Certificate Request is as 

follow: 

 

enum {  

rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), rsa_ephemeral_dh(5), 

dss_ephemeral_dh(6), fortezza_kea(20), (255)  

} ClientCertificateType;  

 

opaque DistinguishedName<1..2^16-1>;  

 

     struct {  

         ClientCertificateType certificate_types<1..2^8-1>;  

         DistinguishedName certificate_authorities<3..2^16-1>;  

     } CertificateRequest;  
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Certificate_types This field is a list of the types of  certificates requested, 

sorted in order of the server's preference. 

Certificate_authorities A list of the distinguished names of acceptable certificate 

authorities. 

 

Note: DistinguishedName is derived from [14].  

 

Note: It is a fatal handshake_failure alert for an anonymous server to request client 

identification.  

 

5.8.7 Server hello done  

The server hello done message is sent by the server to indicate the end of the 

server hello and associated messages.  After sending this message the server will wait 

for a client response. The Structure of ServerHelloDone is as follow: 

 

     struct { } ServerHelloDone;  

 

Upon receipt of the server hello done message the client should verify that the 

server provided a valid certificate if required and check that the server hello 

parameters are acceptable.  

 

5.8.8 Client certificate  

This is the first message the client can send after receiving a server hello done 

message.  This message is only sent if the server requests a certificate.  If no suitable 

certificate is available, the client should send a no_certificate alert instead.  This alert 

is only a warning, however the server may respond with a fatal handshake failure alert 

if client authentication is required. Client certificates are sent using the Certificate 

defined in Section 5.8.5.  

 

5.8.9 Client key exchange message  

The choice of messages depends on which public key algorithm(s) has (have) 

been selected. In our case the only supported algorithm is RSA. The Structure of 

ClientKeyExchange is as follow: 
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     struct {  

         select (KeyExchangeAlgorithm) {  

             case rsa: EncryptedPreMasterSecret;  

             case diffie_hellman: ClientDiffieHellmanPublic;  

             case fortezza_kea: FortezzaKeys;  

         } exchange_keys;  

     } ClientKeyExchange;  

 

The information to select the appropriate record structure is in the pending session 

state.  

 

RSA encrypted premaster secret message  

If RSA is being used for key agreement and authentication, the client generates 

a 48-byte pre-master secret, encrypts it under the public key from the server's 

certificate or temporary RSA key from a server key exchange message, and sends the 

result in an encrypted premaster secret message. The Structure of PreMasterSecret is 

as follow: 

 

     struct {  

         ProtocolVersion client_version;  

         opaque random[46];  

     } PreMasterSecret;  

 

Client_version The latest (newest) version supported by the client. This is used to 

detect version roll-back attacks. 

Random 46 securely-generated random bytes. 

 

The PreMasterSecret is encrypted using RSA algorithm after forming it into PKCS#1 

Block. (See chapter 6 on how to form a PKCS#1 Block). 

     struct {  

         public-key-encrypted PreMasterSecret pre_master_secret;  

     } EncryptedPreMasterSecret;  
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Pre_master_secret This random value is generated by the client and is used to 

generate the master secret, as specified in Section 5.12. 

 

 

5.8.10 Certificate verify  

This message is used to provide explicit verification of a client certificate.  This 

message is only sent following any client certificate that has signing capability. The 

structure of CertificateVerify is as follow: 

 

     enum { anonymous, rsa, dsa } SignatureAlgorithm;  

 

     digitally-signed struct {  

         select(SignatureAlgorithm) {  

             case anonymous: struct { };  

             case rsa:  

                 opaque md5_hash[16];  

                 opaque sha_hash[20];  

             case dsa:  

                 opaque sha_hash[20];  

         };  

     } Signature;  

 

       struct {  

            Signature signature;  

       } CertificateVerify;  

 

CertificateVerify.signature.md5_hash  

  MD5(master_secret + pad_2 + MD5(handshake_messages + master_secret + pad_1));  

 

Certificate.signature.sha_hash  

  SHA(master_secret + pad_2 + SHA(handshake_messages + master_secret + pad_1));  
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Pad_1 This is identical to the pad_1 defined in section 5.4.3.1. 

Pad_2 This is identical to the pad_2 defined in section 5.4.3.1. 

 

Here handshake_messages refers to all handshake messages starting at client 

hello up to but not including this message.  

 

5.8.11 Finished  

A finished message is always sent immediately after a change cipher specs 

message to verify that the key exchange and authentication processes were successful.  

The finished message is the first protected with the just-negotiated algorithms, keys, 

and secrets. No acknowledgment of the finished message is required; parties may 

begin sending encrypted data immediately after sending the finished message.  

Recipients of finished messages must verify that the contents are correct. The 

Structure of Finished message is as follow: 

 

     enum { client(0x434C4E54), server(0x53525652) } Sender;  

 

     struct {  

         opaque md5_hash[16];  

         opaque sha_hash[20];  

     } Finished;  

 

md5_hash       MD5(master_secret + pad2 +  MD5(handshake_messages + Sender + 

master_secret + pad1));  

sha_hash        SHA(master_secret + pad2 +  SHA(handshake_messages + Sender + 

master_secret + pad1));  

 

Handshake_messages All of the data from all handshake messages up to but not 

including this message. This is only data visible at the 

handshake layer and does not include record layer headers. 

 

It is a fatal error if a finished message is not preceeded by a change cipher spec 

message at the appropriate point in the handshake.  
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The hash contained in finished messages sent by the server incorporate 

Sender.server; those sent by the client incorporate Sender.client.  The value 

handshake_messages includes all handshake messages starting at client hello up to, 

but not including, this finished message.  This may be different from 

handshake_messages in Section 5.9.8 because it would include the certificate verify 

message (if sent).  

 

Note: Change cipher spec messages are not handshake messages and are not included 

in the hash computations.  

 

5.9 Application data protocol  

Application data messages are carried by the Record Layer and are fragmented, 

compressed and encrypted based on the current connection state.  The messages are 

treated as transparent data to the record layer.  

 

5.10 Cryptographic computations  

The key exchange, authentication, encryption, and MAC algorithms are 

determined by the cipher_suite selected by the server and revealed in the server hello 

message.  

 

5.10.1 Asymmetric cryptographic computations  

The asymmetric algorithms are used in the handshake protocol to authenticate 

parties and to generate shared keys and secrets.  

 

The algorithm that is used to convert the pre_master_secret into the master_secret is 

as follow: 

 

master_secret =  

   MD5(pre_master_secret + SHA('A' + pre_master_secret + ClientHello.random + 

ServerHello.random)) +  

   MD5(pre_master_secret + SHA('BB' + pre_master_secret + ClientHello.random + 

ServerHello.random)) +  
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   MD5(pre_master_secret + SHA('CCC' + pre_master_secret + ClientHello.random + 

ServerHello.random));  

 

RSA  

When RSA is used for server authentication and key exchange, a 48-byte 

pre_master_secret is generated by the client, encrypted under the server's public key, 

and sent to the server.  The server uses its private key to decrypt the 

pre_master_secret.  Both parties then convert the pre_master_secret into the 

master_secret, as specified above.  

RSA digital signatures are performed using PKCS #1 block type 1 (See chapter 

6 for more detail).  RSA public key encryption is performed using PKCS #1 block 

type 2.  

 

5.10.2 Symmetric cryptographic calculations and the CipherSpec  

The technique used to encrypt and verify the integrity of SSL records is 

specified by the currently active CipherSpec.  A typical example would be to encrypt 

data using DES and generate authentication codes using MD5.  The encryption and 

MAC algorithms are set to SSL_NULL_WITH_NULL_NULL at the beginning of the 

SSL Handshake Protocol, indicating that no message authentication or encryption is 

performed.  The handshake protocol is used to negotiate a more secure CipherSpec 

and to generate cryptographic keys.  

 

5.10.1 The master secret  

Before secure encryption or integrity verification can be performed on records, 

the client and server need to generate shared secret information known only to 

themselves.  This value is a 48-byte quantity called the master secret.  The master 

secret is used to generate keys and secrets for encryption and MAC computations. 

 

5.10.2 Converting the master secret into keys and MAC secrets  

The master secret is hashed into a sequence of secure bytes, which are assigned 

to the MAC secrets, keys, and non-export IVs required by the current CipherSpec.  

CipherSpecs require a client write MAC secret, a server write MAC secret, a client 

write key, a server write key, a client write IV, and a server write IV, which are 
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generated from the master secret in that order.  The following inputs are available to 

the key definition process:  

 

       opaque MasterSecret[48]  

       ClientHello.random  

       ServerHello.random  

 

When generating keys and MAC secrets, the master secret is used as an entropy 

source, and the random values provide unencrypted salt material and IVs for 

exportable ciphers.  

 

To generate the key material, compute  

 

key_block =  

   MD5(master_secret + SHA(`A' + master_secret + ServerHello.random +  

ClientHello.random)) +  

   MD5(master_secret + SHA(`BB' + master_secret + ServerHello.random + 

ClientHello.random)) +  

   MD5(master_secret + SHA(`CCC' + master_secret + ServerHello.random + 

ClientHello.random)) + [...];  

 

Until enough output has been generated.  Then the key_block is partitioned as 

follows.  

 

     client_write_MAC_secret[CipherSpec.hash_size]  

     server_write_MAC_secret[CipherSpec.hash_size]  

     client_write_key[CipherSpec.key_material]  

     server_write_key[CipherSpec.key_material]  

     client_write_IV[CipherSpec.IV_size] /* non-export ciphers */  

     server_write_IV[CipherSpec.IV_size] /* non-export ciphers */  

 

Any extra key_block material is discarded.  

Exportable encryption algorithms (for which CipherSpec.is_exportable is true) 

require additional processing as follows to derive their final write keys:  
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final_client_write_key = MD5(client_write_key + ClientHello.random +  

ServerHello.random);  

final_server_write_key = MD5(server_write_key + ServerHello.random + 

ClientHello.random);  

 

Exportable encryption algorithms derive their IVs from the random messages:  

 

     client_write_IV = MD5(ClientHello.random + ServerHello.random);  

     server_write_IV = MD5(ServerHello.random + ClientHello.random);  

 

MD5 outputs are trimmed to the appropriate size by discarding the least-significant 

bytes.  

 

Export key generation example  

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 requires five random bytes 

for each of the two encryption keys and 16 bytes for each of the MAC keys, for a total 

of 42 bytes of key material.  MD5 produces 16 bytes of output per call, so three calls 

to MD5 are required.  The MD5 outputs are concatenated into a 48-byte key_block 

with the first MD5 call providing bytes zero through 15, the second providing bytes 

16 through 31, etc.  The key_block is partitioned, and the write keys are salted 

because this is an exportable encryption algorithm.  

 

client_write_MAC_secret = key_block[0..15]  

server_write_MAC_secret = key_block[16..31]  

client_write_key      = key_block[32..36]  

server_write_key      = key_block[37..41]  

final_client_write_key = MD5(client_write_key + ClientHello.random + 

ServerHello.random)[0..15];  

final_server_write_key = MD5(server_write_key + ServerHello.random + 

ClientHello.random)[0..15];  

     client_write_IV  = MD5(ClientHello.random + ServerHello.random)[0..7];  

     server_write_IV = MD5(ServerHello.random + ClientHello.random)[0..7];  
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6 

Cryptography  

Module 
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6.1 Introduction 

The Cryptography module offers SSL module a set of encryption and decryption 

algorithms to encrypt and decrypt the data that will be sent. The algorithms that will 

be offered by the Cryptography module are: 

1. Public (asymmetric) Key Encryption Algorithms: Used for encrypting 

the negotiated key that will be used in data encryption. 

a. RSA. 

 

2. Symmetric Key Encryption Algorithms: Used for encrypting the data that 

will be exchanged. 

a. RC4 

b. RC2 

c. IDEA 

d. DES 

 

3. Message Digest algorithms 

a. MD5 

b. SHA-1 

 

6.2 Public Key Encryption Algorithms 

The cryptography module has the only supported public key by SSL protocol, 

which is RSA algorithm. It's used for exchanging the key that will be used for 

encrypting the data. However, there is a weak point in public key algorithms that 

prevent the protocol from encrypting data as its. 

The problem arises when the sent message is a set of n possible messages. A 

cryptanalyst can encrypt all the n possible messages (as the encryption key is public) 

and compare the result with the encrypted incoming encrypted message. In this way 

he can know which was the message that has been sent. So this type of attack has 

been taken into account in the standard RSA encryption algorithm which is PKCS#1. 

This standard describes how to encrypt messages using RSA algorithm. We are going 

here to present what we are interesting in and any further description can be found in 
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[2]. The main topic that we are interested in is the format of the messages that will be 

encrypted by RSA. Any message that will be encrypted by RSA algorithm in SSL 3.0 

protocol must follow PKCS#1 ver1.5 standard. Each message is converted to one or 

more blocks, the format of the block is as follows (which has extracted from PKCS#1 

ver 1.5 standard): 

The block consists of: A block type BT, a padding string PS, and the data D 

shall be formatted into a stream of bytes EB, the encryption block. 

EB = 00  BT  PS  00  D  

X Y     concatenation of X,Y 

Xlength in bytes of X 

The block type BT shall be a single byte indicating the structure of the 

encryption block. For version 1.5 of PKCS#1 standard it shall have value 00, 01, or 

02. For a private-key operation, the block type shall be 00 or 01. For a public-key 

operation, it shall be 02. 

The padding string PS shall consist of k3D bytes. For block type 00, the 

bytes shall have value 00; for block type 01, they shall have value FF; and for block 

type 02, they shall be pseudorandomly generated and nonzero. This makes the length 

of the encryption block EB equal to the length of the modulus. 

Notes. 

1. The leading 00 byte ensures that the encryption block, converted to an 

integer, is less than the modulus. 

2. For block type 00, the data D must begin with a nonzero octet or have 

known length so that the encryption block can be parsed 

unambiguously. For block types 01 and 02, the encryption block can 

be parsed unambiguously since the padding string PS contains no bytes 

with value 00 and the padding string is separated from the data D by a 

byte with value 00. 

3. Block type 01 is recommended for private-key operations. 

Block type 01 has the property that the encryption block, 

converted to an integer, is guaranteed to be large. 
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4. Block types 01 and 02 are compatible with PEM RSA 

encryption of content-encryption keys and message digests 

as described in RFC 1423. 

5. For block type 02, it is recommended that the 

pseudorandom byte be generated independently for each 

encryption process, especially if the same data is input to 

more than one encryption process. 

6. For block type 02, the padding string is at least eight byte 

long, which is a security condition for public-key 

operations that prevents an attacker from recovering data by 

trying all possible encryption blocks. For simplicity, the 

minimum length is the same for block type 01. 

7. This standard may be extended in the future to include other block 

types.[2] 

 

After formatting the block(s) it will be encrypted with the public key using RSA 

component that has been developed. 

 

6.2.1 RSA Component 

The RSA component used for encrypting messages using the algorithm 

described in chapter 4. The component contains two main subjects. First, Big 

Numbers Library. Second, RSA Algorithm. 

 

(a) Big Numbers:   For more Security, The RSA Algorithm uses very large 

Numbers (e.g. 1024-bit numbers) and because there is no 

such primitive operations in computer that can handle 

these numbers, a library that encapsulate all primitive 

operations on these numbers (e.g. +,*, / and mod) must be 

developed. 

(b) RSA Algorithm:   It uses Big Number library to do the encryption procedure 

described in chapter 4. 
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6.3 Symmetric Key Encryption Algorithms: 

There are two basic types of symmetric algorithms: block ciphers and stream 

ciphers. Block ciphers operate on blocks of plaintext usually of 64 bits but some times 

longer. Stream ciphers operate on stream of plaintext one bit or byte at a time. With 

block cipher, the same plaintext block will always encrypt to the same ciphertext 

block, using the same key. With stream cipher, the same plaintext bit or byte will 

encrypt to different bit or byte every time its encrypted. 

 

6.3.1 Stream Ciphers: 

Stream cipher converts plaintext to ciphertext bit or byte at atime. It uses a key 

stream generator to output a stream of bits. This key stream is XORed with a stream 

of plaintext to produce the stream of ciphertext bits. SSL supports only one stream 

cipher, which is RC4. 

 

RC4 Algorithm Component 

The RC4 Component implements the RC4 Algorithm described in [13]. For 

technical description of the algorithm refer to [8]. Here we are just going to describe 

how to use this component. Using the component is very simple, it needs at most two 

steps to do the work. 

1) Initializing RC4: using procedure RC4Initialize to initialize the key as a 

parameter. This step done only once at the beginning. 

2) Encryption and Decryption: two procedures used for encryption and 

decryption, RC4Encrypt and RC4Decrypt. It takes as a parameter Key and Data 

block. 

 

6.3.2 Block Ciphers: 

There are many types of block cipher. The supported type by SSL protocol is 

Cipher Block Chaining (CBC) mode. This type uses feed back mechanism, which 

means that the result of the encryption of previous blocks is fed back into the 
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encryption of the current block. In other word, the plaintext is XORed with the 

previous ciphertext block before it is encrypted. The first block in our case in XORed 

with the Initialization Vector (IV) that has been agreed upon between the SSL client 

and server during the handshake. All cipher supported by SSL protocol are block 

ciphers except RC4. 

 

6.4 Message Digest Algorithms 

To allow the client and the server to verify that the message comes from the 

other party and has not been tampered with by another person in the middle, each 

message is hashed using the hashing algorithm agreed on between the client and 

server. There are many hashing algorithms available but the SSL 3.0 protocol 

supports only two hashing algorithms, which are MD5 and SHA-1. 

Note: Due to vulnerability in the hashing procedure used in SSL 3.0 protocol (which 

is MAC), the new standard TLS 1.0 protocol uses different procedures for hashing 

called HMAC. 

 

6.5 SSL Package Cipher suites: 

There are many cipher suites supported by the SSL protocol, but due to U.S. 

export restrictions many of these ciphers are not allowed to be used outside the U.S. 

so until an SSL server is implemented that accepts these band ciphers we can't test 

them on the Internet. This with the time limitations limited the implemented cipher 

suites to the following: 

 

Cipher Suite Cipher Cipher type Key size Hash 

SSL_NULL_WITH_NULL_NULL NULL Stream 0 NULL 

SSL_RSA_WITH_NULL_MD5 NULL Stream 0 MD5 

SSL_RSA_WITH_NULL_SHA NULL Stream 0 SHA 

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RC4 Stream 40 MD5 

SSL_RSA_WITH_RC4_128_MD5 RC4 Stream 128 MD5 

SSL_RSA_WITH_RC4_128_SHA RC4 Stream 128 SHA 

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RC2 Block 40 MD5 

SSL_RSA_WITH_IDEA_CBC_SHA IDEA Block 128 SHA 

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA DES Block 40 SHA 

SSL_RSA_WITH_DES_CBC_SHA DES Block 128 SHA 
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In case of IDEA the algorithm has been tested on test vectors, and proved to be 

error free, but we could not find a server that accept it, so its until now untested on an 

actual SSL session. 
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7 

X.509 Authentication 

Module 



 

 

68 

 

Brief Introduction: 

SSL authentication is based on the ITU-T recommendation X.509, which 

specifies how authentication should be performed and gives a general format that 

should be followed. In this chapter we will cover the main fields of the X.509 

certificate that are critical to the success of the SSL connection, with an explenation 

of each of theses fields. Also we will explain the X.509 object and the Base64 object, 

the latter is used by the former to encode and decode the certificates.
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7.1 What is X.509? : 

ITU-T Recommendation X.509 specifies the authentication service for X.500 

directories, as well as the widely adopted X.509 certificate syntax. The initial version 

of X.509 was published in 1988, version 2 was published in 1993, and version 3 was 

proposed in 1994 and considered for approval in 1995. Version 3 addresses some of 

the security concerns and limited flexibility that were issues in versions 1 and 2.  

Directory authentication in X.509 can be carried out using either secret-key 

techniques or public-key techniques; the latter is based on public-key certificates. The 

standard does not specify a particular cryptographic algorithm, although an 

informative annex of the standard describes the RSA algorithm.  

An X.509 certificate consists of the following fields:  

 version  

 serial number  

 signature algorithm ID  

 issuer name  

 validity period  

 subject (user) name  

 subject public key information  

 issuer unique identifier (version 2 and 3 only)  

 subject unique identifier (version 2 and 3 only)  

 extensions (version 3 only)  

 signature on the above fields  

This certificate is signed by the issuer to authenticate the binding between the 

subject (user's) name and the user's public key. The major difference between versions 

2 and 3 is the addition of the extensions field. This field grants more flexibility as it 

can convey additional information beyond just the key and name binding. Standard 

extensions include subject and issuer attributes, certification policy information, and 

key usage restrictions, among others.  

To authenticate its self the SSL server sends an X.509 Certificate to the SSL 

client. The server can also ask for a client to authenticate its self with a certificate. 
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7.2 X.509 structure in ASN.1: 

The following is just the outer shell of X.509, which encapsulates the ASN.1 

structure of X.509. For the complete ASN.1 structure for X.509 see ITU-T 

Recommendation X.509. 

 

 

Certificate ::= SEQUENCE { 

    tbsCertificate          TBSCertificate, 

    signatureAlgorithm      AlgorithmIdentifier, 

    signature               BIT STRING 

    } 

 

TBSCertificate ::= SEQUENCE { 

    version          [ 0 ]  Version DEFAULT v1(0), 

    serialNumber            CertificateSerialNumber, 

    signature               AlgorithmIdentifier, 

    issuer                  Name, 

    validity                Validity, 

    subject                 Name, 

    subjectPublicKeyInfo    SubjectPublicKeyInfo, 

    issuerUniqueID    [ 1 ] IMPLICIT UniqueIdentifier OPTIONAL, 

    subjectUniqueID   [ 2 ] IMPLICIT UniqueIdentifier OPTIONAL, 

    extensions        [ 3 ] Extensions OPTIONAL 

    } 

 

The Certificate is a SEQUNCE of : 

1- TBScertificate 

It is a SEQUNCE of the following 

(a)  version 

Version ::= INTEGER { v1(0), v2(1), v3(2) }  

The certificate has three versions, when extensions are used, use X.509 

version 3 (value is 2).  If no extensions are present, but a UniqueIdentifier is 

present, use version 2 (value is 1).  If only basic fields are present, use version 

1 (the value is omitted from the certificate as the default value). If this field 

not present then as indicated be DEFULT tag the Version will be v1(0). 

The presence of Version 1 is indicated by the tag [0]. 

(b)  serialNumber 

CertificateSerialNumber ::= INTEGER 

This contains the serial number of the Certificate. It’s an ASN.1 Integer. 

It should be unique for every certificate issued by the CA. 

(c)  issuer 

Contains the algorithm identifier for the signature algorithm used by the CA to 

sign the certificate. 
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(d)  validity 

Validity ::= SEQUENCE { 

        notBefore      Time, 

        notAfter       Time } 

 

    Time ::= CHOICE { 

        utcTime        UTCTime, 

        generalTime    GeneralizedTime } 

 

The certificate validity period is the time interval during which the CA 

warrants that it will maintain information about the status of the certificate. 

The field is represented as a SEQUENCE of two dates: the date on which the 

certificate validity period begins (notBefore) and the date on which the 

certificate validity period ends (notAfter).  Both notBefore and notAfter may 

be encoded as UTCTime or GeneralizedTime. 

UTCTime specifies the year through the two low order digits and time is 

specified to the precision of one minute or one second.  UTCTime includes 

either Z (for Zulu, or Greenwich Mean Time) or a time differential. 

For the purposes of this profile, UTCTime values MUST be expressed 

Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are 

YYMMDDHHMMSSZ), even where the number of seconds is zero. The year 

field (YY) is interpreted as follows: 

Where YY is greater than or equal to 50, the year shall be interpreted as 

19YY; and where YY is less than 50, the year shall be interpreted as 20YY.  

GeneralizedTime values MUST be expressed Greenwich Mean Time 

(Zulu) and MUST include seconds (i.e., times are 

YYYYMMDDHHMMSSZ), even where the number of seconds is zero. 

GeneralizedTime values MUST NOT include fractional seconds. 

 

(e)  subject 

The subject field identifies the entity associated with the public key 

stored in the subject public key field (the CA).  The subject name may be 

carried in the subject field and/or the subjectAltName extension. 

 

(f)  subjectPublicKeyinfo 

SubjectPublicKeyInfo  ::=  SEQUENCE  { 

      algorithm            AlgorithmIdentifier, 

subjectPublicKey     BIT STRING  } 
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This field is used to carry the public key and identify the algorithm with 

which the key is used. The algorithm is identified using the 

AlgorithmIdentifier structure. The subjectPublicKey that holds the RSA key. 

RSAPublicKey ::= SEQUENCE { 

         modulus            INTEGER, -- n 

   publicExponent     INTEGER  -- e -- } 

 

(g)  issureUniqueID & subjectUniqueID 

   UniqueIdentifier  ::=  BIT STRING 

 

These fields may only appear if the version is 2 or 3.  The subject and 

issuer unique identifiers are present in the certificate to handle the possibility 

of reuse of subject and/or issuer names over time.  This profile recommends 

that names not be reused for different entities and that Internet certificates not 

make use of unique identifiers. 

(h)  extensions 

Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension 

 

2- signatureAlgorithem 

AlgorithmIdentifier  ::=  SEQUENCE  { 

algorithm               OBJECT IDENTIFIER, 

   parameters              ANY DEFINED BY algorithm OPTIONAL  } 

 

This field may only appear if the version is 3. If present, this field is a 

SEQUENCE of one or more certificate extensions. The extensions defined for 

X.509 v3 certificates provide methods for associating additional attributes with 

users or public keys and for managing the certification hierarchy. 

 

3- signature 

The signature field contains a digital signature computed upon the ASN.1 

DER encoded tbsCertificate.  The ASN.1 DER encoded tbsCertificate is used as 

the input to the signature function. This signature value is then ASN.1 encoded as 

a BIT STRING and included in the Certificate's signature field. By generating this 

signature, a CA certifies the validity of the information in the tbsCertificate field.  

In particular, the CA certifies the binding between the public key material and the 

subject of the certificate. 
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7.3 The X.509 Object: 

The X.509 object is implemented in a Pascal unit called X509v3.pas. We will 

show first the Object Methods and Properties. 

P = Property, M = Method. 

P/M Name Description 

P CertData : TmemoryStream; The Certificate in its raw Binary form 

M Function Initilize ( Buf : TmemoryStream) : 

Boolean;  

                                         OR 

Function Initilize ( FileName : String): 

Boolean; 

A polymorphic function that: 

If input is Buf it stores Buf into CertData  

else 

it decodes the Base64 encoded Certificate in the 

file specified by FileName and stores it in 

CertData. 

Then it extracts needed information from 

CertData. It returns True if its successful 

otherwise it returns False. 

M Function GetVersion : integer Returns the Certificate Version number 

M Function GetSerialNumber : TmemoryStream; 

 

Returns Serial Number of the certificate 

M Function GetValidity : Tvalidity; Returns the NotBefor and NotAfter validity 

dates 

M Function GetPK : TRSAKey; Returns the RSA key which will be used in Key 

exchange. 

 

As you can see this X.509 object currently implements retrieval of fields which 

are critical to the completion of the SSL handshake. 

 

7.4 How to use X.509 object: 

1- Include  X509v3 to the uses clause. 

2- Make a variable (Say Cert) of type X509. 

3- Create Cert by typing Cert := X509.Create; 

 

 



 

 

74 

4- Initialize  Cert from Memory or file like this 

If Cert.Initilize(Buf) then 

begin 

 //use Cert to get needed information 

 end 

else 

 //Give ERROR Message 

 

If you want to load the Certificate from a file send FileName : string instead 

of Buf : TmemoryStream as explained earlier 

5- Destroy Cert by means of Cert.Free; 

 

7.5 What is Base64? : 

The Base64 Content-Transfer-Encoding is designed to represent   arbitrary 

sequences of octets in a form that need not be humanly readable.  The encoding and 

decoding algorithms are simple, but the encoded data are consistently only about 33 

percent larger than the UUencoded data.  This encoding is virtually identical to the 

one used in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421. The 

Base64 encoding is adapted from RFC 1421, with one change: Base64 eliminates the 

"*" mechanism for embedded clear text. 

 A 65-character subset of US-ASCII is used, enabling 6 bits to be represented 

per printable character. (The extra 65th character, "=", is used to signify a special 

processing function.) 

Note: This subset has the important property that it is represented identically in all 

versions of ISO 646, including US ASCII, and all characters in the subset are also 

represented identically in all versions of EBCDIC.  Other popular encodings, such as 

the encoding used by the uuencode utility and the base85 encoding specified as part of 

Level 2 PostScript, do not share these properties, and thus do not fulfill the portability 

requirements a binary transport encoding for mail must meet.  

The encoding process represents 24-bit groups of input bits as output strings of 

4 encoded characters. Proceeding from left to right, a 24-bit input group is formed by 

concatenating 3 8-bit input groups. These 24 bits are then treated as 4 concatenated 6-

bit groups, each of which is translated into a single digit in the Base64 alphabet. 
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When encoding a bit stream via the Base64 encoding, the bit stream must be 

presumed to be ordered with the most-significant-bit first. 

That is, the first bit in the stream will be the high-order bit in the first byte, and 

the eighth bit will be the low-order bit in the first byte, and so on. 

 Each 6-bit group is used as an index into an array of 64 printable characters. 

The character referenced by the index is placed in the output string. These characters, 

identified in Table 1, below, are selected so as to be universally representable, and the 

set excludes characters with particular significance to SMTP (e.g., ".", CR, LF) and to 

the encapsulation boundaries defined in this document (e.g., "-"). 

Value Encoding Value Encoding Value Encoding Value Encoding 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 

R 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

S 

T 

U 

V 

W 

X 

Y 

Z 

a 

b 

c 

d 

e 

f 

g 

h 

I 

j 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

k 

l 

m 

n 

o 

p 

q 

r 

s 

t 

u 

v 

w 

x 

y 

z 

0 

1 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

(pad) 

 

2 

3 

4 

5 

6 

7 

8 

9 

+ 

/ 

= 

Table showing the Base64 Alphabet. 

The output stream (encoded bytes) must be represented in lines of no more than 

76 characters each.  All line breaks or other characters not found in Table 1 must be 

ignored by decoding software.  In Base64 data, characters other than those in Table 1, 

line breaks, and other white space probably indicate a transmission error, about which 

a warning message or even a message rejection might be appropriate under some 

circumstances. 
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Special processing is performed if fewer than 24 bits are available at the end of 

the data being encoded.  A full encoding quantum is always completed at the end of a 

body.  When fewer than 24 input bits are available in an input group, zero bits are 

added (on the right) to form an integral number of 6-bit groups.  Padding at the end of 

the data is performed using the '=' character.  Since all Base64 input is an integral 

number of octets, only the following cases can arise:  

(1)  The final quantum of encoding input is an integral multiple of 24 bits; here, 

the final unit of encoded output will be an integral multiple of 4 characters with no 

"=" padding,  

(2)  The final quantum of encoding input is exactly 8 bits; here, the final unit of 

encoded output will be two characters followed by two "=" padding characters, or  

(3)  The final quantum of encoding input is exactly 16 bits; here, the final unit of 

encoded output will be three characters followed by one "=" padding character. 

 

Because it is used only for padding at the end of the data, the occurrence of any '=' 

characters may be taken as evidence that the end of the data has been reached 

(without truncation in transit).  No such assurance is possible, however, when the 

number of octets transmitted was a multiple of three. 

 Any characters outside of the Base64 alphabet are to be ignored in Base64-

encoded data.  The same applies to any illegal sequence of characters in the Base64 

encoding, such as "=====". 

 

7.6 The Base64 object: 

The Base64 class TB64 is implemented in the unit Base64.pas. This object 

implements Decoding of Base64 string either read from a file or assigned from a 

memory string, and  the encoding of a memory stream in to a string . Now we will 

show the object Methods and properties: 
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P = Property, M = Method. 

P/M Name Description 

P A : String The Base64 encoded string to be decoded. Can 

be assigned directly, and the result of the 

encoding is assigned to A. 

M Procedure GetText(FileName : string); A procedure that gives the user the option of 

loading the Base64 encoded data into A from a 

file named FileName.. 

M Function Encode(B :TmemoryStream):Integer returns the number of bytes encoded from B, 

and stores the encoded string in A. 

M Function Decode(Var B: TmemoryStream): boolean; Decodes A into B and returns True if it 

succeeds and False if it fails. 

 

This object is used by X509 object to load a certificate from a file. 

 

7.7 How to use Base64 object: 

1- Include Base64 to the uses clause. 

2- Make a variable (Say B64) of type TB64. 

3- Create B64 by typing B64 := TB64.Create; 

4- Load the Base64 encoded file into  A using 

B64.GetText(FileName); 

5- Decode A by into buf : TmemmoryStream by doing the folwoing 

     buf := TmemmoryStream.Create; 

     if B64.Decode(buf) then 

 //use buf 

    else 

 //give an error message 
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8 

Using The  

SSL Package 
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8.1 Introduction 

The package is presented as a component in Delphi™ 4.0. We are going to show 

how to use it in any application that needs an SSL client. The following diagram 

describes how to use this component. 

 

 

 

 

8.2 Creating the Package 

 

You can create the package by two ways: 

1- Drag and Drop the component into the application form, during design time 

only. 

2- Create the component at design time using the method create. 

 

8.3 Initializing the Package: 

After creating the package it will be automatically initialized to certain standard 

that provide maximum available security. User can change these settings by calling 

InitSock procedure with the appropriate parameters. Its prototype is: 

  

Procedure Initsock(Init :ConnectionInit); 

The structure of ConnectionInit is a record that takes all required 

initialization settings. Its structure is: 

 

TSSLConnectionInit = Record 

                     Resumed       : Boolean; 

                     SSLVersion    : TSSLVersion; 

                     ConnectionEnd : TConnectionEnd; 

                     CipherSuites  : TCipherSuites; 

                     Compression   : TCompressionMethods; 

                     Certificate   : X509; 

                     PrivateKey, 

                     PrivateKeyExport  : TRSAKey; 

                     RequestClientCert : TRequestClientCert; 

                    end; 

Create SSL Initialize Connect Handshake Close 

Connection Exchange Data 
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Resume  True if Client want to resume previous connection else False 

SSLVersion Type of SSL Version to be used. ( ver 3.0 in this Package) 

ConnectionEnd The Side of the SSL protocol. (Client side in this Package) 

Cipher Suites Array that contain the cipher suites acceptable by the user 

Compression Array that contain the Compression Methods acceptable by the 

user 

Certificate The certificate of the user. If there is no certificate then its nil 

PrivateKey The private key for the user (used in server side only). No use 

for this field now. 

PrivateKeyExport Used as private key if the original key is greater than 512-bit 

RequestClientCert Define if the SSL server needs a client certificate or not. (not 

used in this package now. 

 

 

8.4 Connecting 

The client can connect to a server by specifying its DNS or IP in Host property 

and the port in Port property. After that the client choose one of the following: 

(1)  Connecting without handshake. 

(2)  Connecting and performing handshake. 

(3) Connect through proxy server and perform handshake. 

 

8.4.1 Connecting without handshake 

The client can connect to the server without using the SSL protocol. This feature 

is helpful for applications that don't want to immediately begin a secure connection. 

They want first to exchange non-secret data and after that they may upgrade their 

connection to be secure using SSL. 

The client can use this by calling procedure Connect. Its prototype is: 

Procedure Connect; 

 

8.4.2 Connecting and performing Handshake 

The client in this case wants an immediate secure connection. So after 

connecting, the handshake will immediately take the place until the secure connection 
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is established. To open this connection the client calls SSLConnect procedure. This 

procedure will establish the connection and perform the handshake. Its prototype is: 

Procedure SSLConnect; 

 

8.4.3 Connect through proxy server and perform handshake 

In some cases the client is behind a proxy server. In this case the SSL protocol 

needs to be tunneled through this proxy. The SSL tunneling protocol is described in 

Appendix A. The client in this case must first initialize the Proxy and ProxyPort 

properties with proxy name and proxy port, respectively. Second, the client calls 

SSLProxyConnect procedure to establish the connection through proxy and perform 

handshake. Its prototype is: 

procedure SSLProxyConnect; 

 

8.5 Handshake 

There are two cases where the client needs to initiate the handshake explicitly: 

(1) Upgrading the connection to SSL connection. 

(2) Resuming a session. 

 

8.5.1 Upgrading the connection to SSL connection 

When the client and the server agree to upgrade their connection to SSL 

connection and the server is ready the client call InitHandshake procedure to perform 

the handshake. After finishing, the connection is now upgraded to SSL connection. 

The prototype of the procedure is: 

Procedure InitHandshake; 

 

8.5.2 Resuming a session 

In this case the client wants to resume a previously established session with the 

server. Reconnecting with the server needs the previous session information to 

establish the SSL connection - if it's not already there. This done by calling 

SSLResumeHandshake procedure. Its prototype is: 

 

Procedure SSLResumeHandshashake[(Previous : TSSLClientSock)]; 
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The parameter is optionally. If the session is already initialized don't call it with 

the parameter. 

 

8.6 Exchanging Data 

When reaching this state the client and server can know exchange their secret 

information securely. Two kind of procedures used for this purpose: 

(1) Receiving procedures. 

(2) Sending procedures. 

 

8.6.1 Receiving 

A set of receiving procedures has been implemented for adding more flexibility 

to the package. The best way to list them is by providing their prototype: 

 

Procedure SSLReadStream( Size : Integer) : TmemoryStream; 

Procedure SSLReadString( Size : Integer): String; 

 

If Size = 0, the function return immediately with the available Data in the buffer. Else 

the function return the number of bytes. If the available data is less than size the 

function will block until the remaining bytes received 

 

8.6.2 Sending 

A set of sending procedures has been implemented for adding more flexibility to 

the package. The best way to list them is by providing their prototype: 

Procedure SSLSendStream(Fragment : TmemoryStream); 

Procedure SSLSendString(Fragment : String); 

 

The client is applicable to use anyone of these procedures to send a data to the server. 

 

9.7 Closing the Connection 

After exchanging data is finished the client need to close the connection. 

Closing the connection is done by calling SSLClose procedure. Its prototype is: 

Procedure SSLClose;  
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9 

SSL Gateway 

(SSLG) 
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9.1 SSL Gateway 

SSL Gateway (SSLG) is a program that works as a server for the user 

application and as SSL client for the SSL Server. In another way, it stays between the 

user application that wants to use a secure connection and the server that user 

application wants to connect to. 

This SSLG is useful when the user doesn't want to use the SSL Component in 

his application or the application has been developed and can't be modified. 

 

9.2 How SSL Gateway Works 

SSLG accept TCP connection from the user application on one side and from 

the other side it initiate SSL Connection with the SSL server. After that, all data that 

comes from the user application will be send to server using the pre-established SSL 

Connection with it. Also all data received from the SSL server will be decrypted, 

verified and send to the user application. 

 

9.3 How to use SSL Gateway 

SSLG must be setup before it's used. The setup steps are as follow: (see figure 6) 

A) Application Side:  

1) Specify the port that will accept user application connections. 

2) Specify which protocol will the user application use, so that the SSLG 

can get the host name by parsing the incoming messages. If its unknown 

protocol or its not supported by SSLG then the user must specify a standard 

host for the SSL Connection. 

b) SSL Side: 

1) If the connection of SSL will be made through proxy then the user must 

specify the proxy name and port. If the proxy need an authentication then 

user specifies the User ID and Password. 

2) If the user application protocol is not known or not supported by SSLG 

then the user must specify a standard host for the session. 
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Now, After doing these steps the user need only to press the "START SSLG" to 

turn on the SSL Gateway. 

 

9.4: Security Analysis of SSLG 

The main purpose of this application is to provide a secure connection for 

applications that do not implement SSL. However, to provide the user with full 

security, the two applications SSLG and user application must be in the same 

computer. If they are in two different computers then the connection path between the 

SSLG and the user application must be trusted to ensure full security, because the data 

between the two is exchanged without any encryption. 

Figure (6): SSL Gateway 
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SSL 

Tunneling 
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Tunneling SSL Through a WWW Proxy 

 

Status of this Memo  

This document is an Internet-Draft. Internet-Drafts are working documents of the 

Internet Engineering Task Force (IETF), its areas, and its working groups. Note that 

other groups may also distribute working documents as Internet-Drafts.  

Internet-Drafts are draft documents valid for a maximum of six months and may be 

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to 

use Internet-Drafts as reference material or to cite them other than as ``work in 

progress.''  

To learn the current status of any Internet-Draft, please check the ``1id-abstracts.txt'' 

listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), 

nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), 

or ftp.isi.edu (US West Coast).  

Table of Contents  

 Overview  

 General Considerations  

 The CONNECT Method  

 Proxy Response  

 Security Considerations  

 Extensibility  

Overview  

The wide success of SSL (Secure Sockets Layer from Netscape Communications 

Corporation) has made it vital that the current WWW proxy protocol be extended to 

allow an SSL client to open a secure tunnel through the proxy.  

The HTTPS protocol, which is just HTTP on top of SSL, can be proxied in the same 

way that currently other protocols are handled by the proxies: to have the proxy 

initiate a secure session with the remote HTTPS server, and then perform the HTTPS 

transaction. This is the way FTP and Gopher get handled by proxies, too. However, 

this approach has two disadvantages:  
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 The connection between the client and the proxy is normal HTTP, and hence, not 

secure. This is, however, often acceptable if the clients are in a trusted subnet 

(behind a firewall).  

 The proxy will need to have full SSL implementation incorporated into it.  

This document describes a way to do SSL tunneling without an implementation of 

SSL, in a way that is compatible with the current WWW proxy protocol (as defined 

by the HTTP/1.0 specification). The existing implementation of SSL tunneling in the 

Netscape Navigator and the Netscape Proxy Server conform to this specification. A 

patch implementing this feature also exists for the CERN proxy server (CERN httpd).  

General Considerations  

When tunneling SSL, the proxy must not have access to the data being transferred in 

either direction, for sake of security. The proxy merely knows the source and 

destination addresses, and possibly, if the proxy supports user authentication, the 

name of the requesting user.  

In other words, there is a handshake between the client and the proxy to establish the 

connection between the client and the remote server through the proxy. In order to 

make this extension be backwords compatible, the handshake must be in the same 

format as HTTP/1.0 requests, so that proxies without support for this feature can still 

cleanly determine the request as impossible for them to service, and give proper error 

responses (rather than e.g. get hung on the connection).  

SSL tunneling isn't really SSL specific -- it's a general way to have a third party 

establish a connection between two points, after which bytes are simply copied back 

and forth by this intermediary.  

When SSL tunneling support is put into the SSL source code, it will work for any SSL 

enhanced application.  

The CONNECT Method  

The client connects to the proxy, and uses the CONNECT method to specify the 

hostname and the port number to connect to. The hostname and port number are 

separated by a colon, and both of them must be specified.  

The host:port part is followed by a space and a string specifying the HTTP version 

number, e.g. HTTP/1.0, and the line terminator (CR LF pair, or a single LF).  
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After that there is a series of zero or more of HTTP request header lines, followed by 

an empty line. Each of those header lines is also terminated by the CR LF pair, or a 

single LF. The empty line is simply another CR LF pair, or another LF.  

After the empty line, if the handshake to establish the connection was successful, SSL 

data transfer can begin.  

Example:  

CONNECT home.netscape.com:443 HTTP/1.0 

User-agent: Mozilla/1.1N  

The advantage of this approach is that this protocol is freely extensible; for example, 

the proxy authentication can be used.  

Example:  

CONNECT home.netscape.com:443 HTTP/1.0 

User-agent: Mozilla/1.1N 

Proxy-authorization: basic aGVsbG86d29ybGQ=  

Proxy Response  

After the empty line in the request, the client will wait for a response from the proxy. 

The proxy will evaluate the request, make sure that it is valid, and that the user is 

authorized to request such a connection. If everything is in order, the proxy will make 

a connection to the destination server, and, if successful, send a "200 Connection 

established" response to the client. Again, the response follows the HTTP/1.0 

protocol, so the response line starts with the protocol version specifier, and the 

response line is followed by zero or more response headers, followed by an empty 

line. The line separator is CR LF pair, or a single LF.  

Example:  

HTTP/1.0 200 Connection established 

Proxy-agent: Netscape-Proxy/1.1  

After the empty line, the proxy will start passing data from the client connection to the 

remote server connection, and vice versa. At any time, there may be data coming from 

either connection, and that data should be forwarded to the other connection 

immediately.  
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If at any point either one of the peers gets disconnected, any outstanding data that 

came from that peer will be passed to the other one, and after that also the other 

connection will be terminated by the proxy. If there is outstanding data to that peer 

undelivered, that data will be discarded.  

Security Considerations  

CONNECT is really a lower-level function than the rest of the HTTP methods, kind 

of an escape mechanism for saying that the proxy should not interfere with the 

transaction, but merely forward the data. This is because the proxy should not need to 

know the entire URI that is being accessed (privacy, security), only the information 

that it explicitly needs (hostname and port number). Due to this fact, the proxy cannot 

verify that the protocol being spoken is really SSL, and so the proxy configuration 

should explicitly limit allowed connections to well-known SSL ports (such as 443 for 

HTTPS, 563 for SNEWS, as assigned by the Internet Assigned Numbers Authority).  

Extensibility  

The SSL tunneling handshake is freely extensible using the HTTP/1.0 headers; as an 

example, to enforce authentication for the proxy the proxy will simply use the 407 

status code and the Proxy-authenticate response header (as defined by the HTTP/1.0 

specification) to ask the client to send authentication information:  

HTTP/1.0 407 Proxy authentication required 

Proxy-authenticate: ...  

The client would then send the authentication information in the Proxy-authorization 

header:  

CONNECT home.netscape.com:443 HTTP/1.0 

User-agent: ... 

Proxy-authorization: ...  

Multiple Proxy Servers  

 

This specification applies also to proxy servers talking to other proxy servers. As an 

example, double firewalls make this necessary. In this case, the inner proxy is simply 

considered a client with respect to the outer proxy. 
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B 

SSL  

Presentation Language 



 

 

92 

B.1 Basic block size  

The representation of all data items is explicitly specified.  The basic data block 

size is one byte (i.e. 8 bits).  Multiple byte data items are concatenations of bytes, 

from left to right, from top to bottom.  From the bytestream a multi-byte item (a 

numeric in the example) is formed (using C notation) by:  

 

     value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ...  

     | byte[n-1];  

 

This byte ordering for multi-byte values is the commonplace network byte order or 

big endian format.  

 

B.2 Miscellaneous  

Comments begin with "/*" and end with "*/". Optional components are denoted 

by enclosing them in "[[ ]]" double brackets. Single byte entities containing 

uninterpreted data are of type opaque.  

 

B.3 Vectors  

A vector (single dimensioned array) is a stream of homogeneous data elements.  

The size of the vector may be specified at documentation time or left unspecified until 

runtime.  In either case the length declares the number of bytes, not the number of 

elements, in the vector.  The syntax for specifying a new type T' that is a fixed length 

vector of type T is  

      

T T'[n];  

 

Here T' occupies n bytes in the data stream, where n is a multiple of the size of 

T.  The length of the vector is not included in the encoded stream.  

 

In the following example, Datum is defined to be three consecutive bytes that 

the protocol does not interpret, while Data is three consecutive Datum, consuming a 

total of nine bytes.  
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     opaque Datum[3];      /* three uninterpreted bytes */  

     Datum Data[9];        /* 3 consecutive 3 byte vectors */  

 

Variable length vectors are defined by specifying a subrange of legal lengths, 

inclusively, using the notation <floor..ceiling>. When encoded, the actual length 

precedes the vector's contents in the byte stream.  The length will be in the form of a 

number consuming as many bytes as required to hold the vector's specified maximum 

(ceiling) length.  A variable length vector with an actual length field of zero is 

referred to as an empty vector.  

 

     T T'<floor..ceiling>;  

 

In the following example, mandatory is a vector that must contain between 300 

and 400 bytes of type opaque.  It can never be empty. The actual length field 

consumes two bytes, a uint16, sufficient to represent the value 400 (see Section 4.4).  

On the other hand, longer can represent up to 800 bytes of data, or 400 uint16 

elements, and it may be empty.  Its encoding will include a two byte actual length 

field prepended to the vector.  

 

     opaque mandatory<300..400>;  

           /* length field is 2 bytes, cannot be empty */  

     uint16 longer<0..800>;  

           /* zero to 400 16-bit unsigned integers */  

 

B.4 Numbers  

The basic numeric data type is an unsigned byte (uint8).  All larger numeric data 

types are formed from fixed length series of bytes concatenated as described in 

Section 4.1 and are also unsigned.  The following numeric types are predefined.  

 

     uint8 uint16[2];  

     uint8 uint24[3];  

     uint8 uint32[4];  

     uint8 uint64[8];  
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B.5 Enumerateds  

An additional sparse data type is available called enum.  A field of type enum 

can only assume the values declared in the definition. Each definition is a different 

type.  Only enumerateds of the same type may be assigned or compared.  Every 

element of an enumerated must be assigned a value, as demonstrated in the following 

example. Since the elements of the enumerated are not ordered, they can be assigned 

any unique value, in any order.  

 

     enum { e1(v1), e2(v2), ... , en(vn), [[(n)]] } Te;  

 

Enumerateds occupy as much space in the byte stream as would its maximal 

defined ordinal value.  The following definition would cause one byte to be used to 

carry fields of type Color.  

 

     enum { red(3), blue(5), white(7) } Color;  

 

One may optionally specify a value without its associated tag to force the width 

definition without defining a superfluous element. In the following example, Taste 

will consume two bytes in the data stream but can only assume the values 1, 2 or 4.  

 

     enum { sweet(1), sour(2), bitter(4), (32000) } Taste;  

 

The names of the elements of an enumeration are scoped within the defined 

type.  In the first example, a fully qualified reference to the second element of the 

enumeration would be Color.blue.  Such qualification is not required if the target of 

the assignment is well specified.  

 

     Color color = Color.blue;     /* overspecified, legal */  

     Color color = blue;           /* correct, type implicit */  

 

For enumerateds that are never converted to external representation, the 

numerical information may be omitted.  
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     enum { low, medium, high } Amount;  

 

B.6 Constructed types  

Structure types may be constructed from primitive types for convenience.  Each 

specification declares a new, unique type.  The syntax for definition is much like that 

of C.  

 

struct {  

       T1 f1; T2 f2;  

       ...  

       Tn fn; } [[T]];  

 

The fields within a structure may be qualified using the type's name using a 

syntax much like that available for enumerateds.  For example, T.f2 refers to the 

second field of the previous declaration.  Structure definitions may be embedded.  

 

B.6.1 Variants  

Defined structures may have variants based on some knowledge that is available 

within the environment.  The selector must be an enumerated type that defines the 

possible variants the structure defines.  There must be a case arm for every element of 

the enumeration declared in the select.  The body of the variant structure may be 

given a label for reference.  The mechanism by which the variant is selected at 

runtime is not prescribed by the presentation language.  

 

     struct {  

         T1 f1;  

         T2 f2;  

          ....  

         Tn fn;  

         select (E) {  

             case e1: Te1;  

             case e2: Te2;  

                 ....  

             case en: Ten;  

         } [[fv]];  

     } [[Tv]];  
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For example  

     enum { apple, orange } VariantTag;  

     struct {  

         uint16 number;  

         opaque string<0..10>; /* variable length */  

     } V1;  

 

     struct {  

         uint32 number;  

         opaque string[10];    /* fixed length */  

     } V2;  

     struct {  

         select (VariantTag) { /* value of selector is implicit */  

             case apple: V1;   /* VariantBody, tag = apple */  

             case orange: V2;  /* VariantBody, tag = orange */  

         } variant_body;       /* optional label on variant */ } VariantRecord;  

 

Variant structures may be qualified (narrowed) by specifying a value for the 

selector prior to the type.  For example, a  

     orange VariantRecord  

is a narrowed type of a VariantRecord containing a variant_body of type V2.  

 

B.7 Constants  

Typed constants can be defined for purposes of specification by declaring a 

symbol of the desired type and assigning values to it. Under-specified types (opaque, 

variable length vectors, and structures that contain opaque) cannot be assigned values.  

No fields of a multi-element structure or vector may be elided.  

For example,  

     struct {  

         uint8 f1;  

         uint8 f2;  

     } Example1;  

 

Example1 ex1 = {1, 4};/* assigns f1 = 1, f2 = 4 */  
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